最好的数学分析方法:数学对于科学何以重要之定量分析
本文作者:刘瑞祥,[遇见数学]感谢刘老师一直的关注支持!
如标题所言,本文只谈利用数学进行定量分析对科学研究的重要性。概而言之,定量分析是推翻谬误、发现真理的重要途径,科学家正是有了“量”作依据,才能提出关于“性”的正确观点。我希望能尽量选择一些经典例子来论述。
第一个例子出自伽利略的《关于两门新科学的对话》,作者在“第二天”“第三天”和“第四天”的对话中,虽然表面上还是用类似传统几何那种逻辑推理的方法来论证命题,但是有几个重要区别:
一是引入了“时间”“速度(率)”“动量”等物理量(当然,那时的“动量”未必就是现代的动量概念),这是可以理解的,因为伽利略研究的是运动问题嘛,至于他所谓“两门新科学”中的另一门——材料科学——姑且不论;
二是作者论述的命题只包括了数值方面的论述,没有关于位置关系的命题。而我们知道,在传统几何学中,位置关系——诸如垂直、平行、结合性等等——是非常重要的内容。
正是在这些推理的基础上,伽利略建立了他的关于运动——特别是加速运动——的新理论。不过我们也要指出,因为伽利略的时代还不足以给出时间、速度等等物理量的精确测量结果,所以伽利略只能以比例的形式进行论述,在他的文本中,充斥了诸如“让我们假设它(水或其它物质与空气密度之比——引者注)是 10 ”“让我们假设它运动的速率是 20 ”之类的话语。不过这是无所谓的,因为我们最重要的是建立运动方程的形式。
第二个例子是哈维的《心血运动论》。作者在第九章《证实血液循环的首要前提》里依据解剖得到的结果提出:
心脏每次收缩时将所含血量的 1/4 、 1/5 、 1/6 或 1/8 输入动脉,即输入动脉的量可能是半盎司、或三个特拉姆,或是一个特拉姆的血液……目前发现,在半个小时内,心脏可能已跳动了 1000 次,在有些情况下甚至是 2000 次、 3000 次或 4000 次。心脏射出血液的特拉姆数与搏动的次数相乘,因而我们得到 1000 个半盎司, 1000 个三特拉姆,或相同方式成倍增加的血液量……同样,经推测在绵羊或狗体内心脏每次收缩只放出一克多的血量,那么半个小时内就会有 1000 克,或者说有三磅半的血液由心脏射入主动脉;然而实际上两种动物体内所含的血量都不超过四磅……
作者计算了经由心脏射出的血液和动物体内全部血液的量,发现前者远远大于后者,有力地破除了旧的心血理论,正确地提出“血液不间断地灌注到动脉中的流量要远远大于食物所能提供的量……血液必须有一条循环的通路才能使全部血液由出发点又返回到出发点”。由于笔者的生物学知识十分匮乏,所以不能为大家作更详尽的介绍了。
我要讲的第三个例子来自拉瓦锡的《化学基础论》。作者在第三章《大气的分析,将其分为两种弹性流体:一种适宜于呼吸,而另一种则不能被呼吸》里介绍了诸如加热水银等实验,特别提到“我收集了实验中形成的漂浮在流动的汞中的红色微粒,发现它们共有 45 格令”以及“这个实验中汞煅烧后所剩下的空气减少到原来的 5/6 ”,而作者在加热这种“红色微粒”的时候,又“收集到 7 或 8 立方吋的弹性流体,该流体助呼吸和助燃烧的能力比大气要强得多”(这里提到的即是汞和氧气化合以及氧化汞分解实验)。书里介绍的实验还有很多,不再一一列举。
我们可以看到,仅仅从以上非常粗糙的定量分析中,就足以揭示出一个几千年来人们都没有发现的问题,即空气不是一种单一物质,而是至少可以分成两种“具有不同和相反品质的弹性流体”:一种是“有益健康和适宜于呼吸的部分”,另一种是“不能助燃烧或助呼吸”的“毒气”。(因为笔者掌握的资料所限,这部分引文不是从前面所示版本中摘录的)
以上都是非常古老的例子了,至于近现代的例子更多,比如瑞利通过比较气体的密度而发现惰性气体,普朗克发现黑体辐射公式而创立了量子理论,巴尔末发现氢原子光谱公式导致玻尔提出电子轨道定态模型,如此等等。不同于前面的例子,这些问题都涉及到非常精确的数据,这反映了科学的进步。
我想,以上例子足以说明利用数学进行定量研究对科学的推动作用了吧。但是还没有说到为什么定量如此重要。笔者认为,“定量”实际上就是建立了一个客观标准,以至于无论你有什么观点,都要接受“量”这个显而易见的事实的检验:你无论认为“性”是什么样的,被“量(四声)”一“量(二声)”,都会显露出真实面目。也就是说,“性”之不同,一定会显示在“量”上。
以上错误之处,还请读者指正。
,
免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com