三角函数的最值问题常见题型(一道求最值的几何难题)
这是在今日头条上看到的几何难题,说难度之大,老师也拿不下。于是看了一下。
题目如下:三角形定角对定边,求两条动边组成的一次多项式的最大值。
几何难题
想了一下,几何方法是不太好解,那就用三角函数的方法试一下。很多几何难题用三角函数去解会比较简单,我以前的文章也有不少这方面的讲解。
我们可以把C点看成三角形ABC外接圆上的动点。设∠A=α,则∠B=135°-α。
用三角函数解几何题
根据正弦定理,我们有:
AB/sin45°=AC/sin(135°-α)=BC/sinα,
AC=4√2sin(135°-α)
=4√2(√2cosα/2 √2sinα/2)
=4cosα 4sinα。
BC=4√2sinα。
√2AC BC
=4√2cosα 4√2sinα 4√2sinα
=4√2cosα 8√2sinα
=4√2(cosα 2sinα)
=4√10(cosα/√5 2sinα/√5)
≤4√10。
所以,√2AC BC的最大值为4√10。
用三角函数很快就能解出。
用几何方法解题,如果以前不知道解题方法,大概率是不能很快做出来。需要一定的训练并总结归纳。
三角函数可以解很多几何难题,但也不是所有的几何题都可以用三角函数轻易解出。再说初中生不一定掌握了三角函数知识,主要还是用几何方法解题。
学习有很多技巧,让我们一起研究。
,免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com