大数据技术含义(大数据中的技术概念)
编辑导语:相信大家平时用大数据处理产品时,会被各种的专业技术名词绕晕,然后傻傻分不清本篇文章中,作者将大数据中常用的一些技术名词作了汇总和分类感兴趣的小伙伴不妨来看看,说不定会用到哦,我来为大家科普一下关于大数据技术含义?以下内容希望对你有帮助!
大数据技术含义
编辑导语:相信大家平时用大数据处理产品时,会被各种的专业技术名词绕晕,然后傻傻分不清。本篇文章中,作者将大数据中常用的一些技术名词作了汇总和分类。感兴趣的小伙伴不妨来看看,说不定会用到哦。
在大数据处理产品中经常会碰到一些技术名词,在这里汇总整理。
一、数据源类型1. 宽表 VS 窄表
宽表:指字段比较多的数据库表。通常是指业务主体相关的指标、纬度、属性关联在一起的一张数据库表。
广泛应用于数据挖掘模型训练前的数据准备,通过把相关字段放在同一张表中,可以大大提供数据挖掘模型训练过程中迭代计算的消息问题。
虽然提高了数据查询效率,但存在大量冗余。
窄表:严格按照数据库设计三范式。减少了数据冗余,但修改一个数据可能需要修改多张表。
数据库设计三范式:
确保每列保持原子性;
确保表中的每列都和主键相关;
确保每列都和主键列直接相关,而不是间接相关。
2. MySQL
MySQL是一种关系型数据库管理系统,关系数据库将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性。是目前最流行的关系型数据库管理系统之一。
3. Oracle
Oracle是一款关系数据库管理系统。它是在数据库领域一直处于领先地位的产品,系统可移植性好、使用方便、功能强,适用于各类大、中、小微机环境。
它是一种高效率的、可靠性好的、适应高吞吐量的数据库方案。
4. GBase
GBase 是南大通用数据技术有限公司推出的自主品牌的数据库产品,在国内数据库市场具有较高的品牌知名度。
5. HBase
HBase是一个分布式的、面向列的开源数据库。
不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。
6. FTP
FTP(File Transfer Protocol)是一套网络文件传输标准协议,访问远程资源, 实现用户往返传输文件、目录管理以及访问电子邮件等等, 即使双方计算机可能配有不同的操作系统和文件存储方式。
7. HDFS
HDFS是一个Hadoop分布式文件系统,HDFS有着高容错性的特点,并且设计用来部署在低廉的硬件上。
而且它提供高吞吐量来访问应用程序的数据,适合那些有着超大数据集的应用程序。
二、数据计算1. MaxCompute
MaxCompute是一项大数据计算服务,它能提供快速、完全托管的PB级数据仓库解决方案,可以经济并高效的分析处理海量数据。
2. Flink
Flink是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。
Flink设计为在所有常见的集群环境中运行,以内存速度和任何规模执行计算。
3. Kafka
Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据。
4. 离线计算 VS 实时计算
离线计算:通常也称为“批处理”,表示那些离线批量、延时较高的静态数据处理过程。
离线计算适用于实时性要求不高的场景,比如离线报表、数据分析等。常见计算框架:MapReduce,Spark SQL
实时计算:通常也称为“实时流计算”、“流式计算”,表示那些实时或者低延时的流数据处理过程。
实时计算通常应用在实时性要求高的场景,比如实时ETL、实时监控等。常见计算框架:Spark Streaming,Flink
5. OLTP VS OLAP
OLTP(On-Line Transaction Processing):可称为在线事务处理,一般应用于在线业务交易系统,比如银行交易、订单交易等。
OLTP的主要特点是能够支持频繁的在线操作(增删改),以及快速的访问查询。
OLAP(On-Line Analytical Processing):可称为在线分析处理,较多的应用在数据仓库领域,支持复杂查询的数据分析,侧重于为业务提供决策支持。
目前常见是的实时OLAP场景,比如Druid(Apache Druid,不同于阿里Druid)、ClickHouse等存储组件能够较好的满足需求。
三、分布式相关1. Hadoop
Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。
2. HDFS
HDFS是一个Hadoop分布式文件系统。详情在上一小节中已介绍。
3. hive
Hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载。
这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。
hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行。
4. MapReduce
MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。
概念”Map(映射)”和”Reduce(归约)”,是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。
它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。
5. Spark
Spark是专为大规模数据处理而设计的快速通用的计算引擎,类似于Hadoop MapReduce的通用并行框架,拥有Hadoop MapReduce所具有的优点;
但不同于MapReduce的是——Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。
四、数据仓库1. 简介
数据仓库(全称:Data Warehouse;简称:DW/DWH),是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的。
它是一整套包括了ETL(extract-transform-load)、调度、建模在内的完整的理论体系。
2. 与数据库的差异
数据仓库是专门为数据分析设计的,涉及读取大量数据以了解数据之间的关系和趋势。而数据库是用于捕获和存储数据。
3. 分层
ODS(Operation Data Store): 数据源头层,数据仓库源头系统的数据表通常会原封不动的存储一份,这称为ODS层(可理解为原始库),是后续数据仓库加工数据的来源。数据来源:业务库、埋点日志、消息队列。
DWD(Data Warehouse Details ):数据细节层,是业务层与数据仓库的隔离层。主要对ODS数据层做一些数据清洗和规范化的操作。数据清洗:去除空值、脏数据、超过极限范围的。
DWB(Data Warehouse Base):数据基础层,存储的是客观数据,一般用作中间层,可以认为是大量指标的数据层,可理解为知识库字典、常用标准库。
DWS(Data Warehouse Service): 数据服务层,基于DWB上的基础数据,整合汇总成分析某一个主题域的服务数据层,一般是宽表。用于提供后续的业务查询,OLAP分析,数据分发等。
ADS(ApplicationData Service):应用数据服务,该层主要是提供数据产品和数据分析使用的数据,一般会存储在ES、mysql等系统中供线上系统使用。
4. 数据地图
以数据搜索为基础,提供表使用说明、数据类目、数据血缘、字段血缘等工具,帮助数据表的使用者和拥有者更好地管理数据、协作开发。
5. 数据血缘
即数据的来龙去脉,主要包含数据的来源、数据的加工方式、映射关系以及数据出口。
数据血缘属于元数据的一部分,清晰的数据血缘是数据平台维持稳定的基础,更有利于数据变更影响分析以及数据问题排查。
本文由@丸子不爱吃丸子 原创发布于人人都是产品经理,未经许可,禁止转载。
题图来自Unsplash,基于CC0协议
免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com