高中关于导数的知识(导数导数进入高考深处)
1.导数概念及其几何意义
(1)了解导数概念的实际背景.
(2)理解导数的几何意义.
2.导数的运算
(2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax b)的复合函数)的导数.
• 常见基本初等函数的导数公式:
• 常用的导数运算法则:
知识点讲解
一、导数的概念
1.平均变化率
2.瞬时速度
3.瞬时变化率
4.导数的概念
5.导函数的概念
如果函数y=f(x)在开区间(a,b)内的每一点都是可导的,则称f(x)在区间(a,b)内可导.这样,对开区间(a,b)内的每一个值x,都对应一个确定的导数f'(x),于是在区间(a,b)内f'(x)构成一个新的函数,我们把这个函数称为函数y=f(x)的导函数(简称导数),记为f'(x)或y',即
二、导数的几何意义
三、导数的计算
1.基本初等函数的导数公式
2.导数的运算法则
3.复合函数的导数
复合函数y=f(g(x))的导数和函数y=f (u),u=g(x)的导数间的关系为yx′=yu′·ux′,即y对x的导数等于y对u的导数与u对x的导数的乘积.
考向分析考向一 导数的计算
1.导数计算的原则和方法
(1)原则:先化简解析式,使之变成能用八个求导公式求导的函数的和、差、积、商,再求导.
(2)方法:
①连乘积形式:先展开化为多项式的形式,再求导;
②分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导;
③对数形式:先化为和、差的形式,再求导;
④根式形式:先化为分数指数幂的形式,再求导;
⑤三角形式:先利用三角函数公式转化为和或差的形式,再求导.
2.求复合函数的导数的关键环节和方法步骤
(1)关键环节:
①中间变量的选择应是基本函数结构;
②正确分析出复合过程;
③一般是从最外层开始,由外及里,一层层地求导;
④善于把一部分表达式作为一个整体;
⑤最后结果要把中间变量换成自变量的函数.
(2)方法步骤:
①分解复合函数为基本初等函数,适当选择中间变量;
②求每一层基本初等函数的导数;
③每层函数求导后,需把中间变量转化为自变量的函数.
考向二 导数的几何意义
求曲线y=f (x)的切线方程的类型及方法
(5)①在点P处的切线即是以P为切点的切线,P一定在曲线上.
②过点P的切线即切线过点P,P不一定是切点.因此在求过点P的切线方程时,应首先检验点P是否在已知曲线上.
【规律总结】
求切线方程的步骤:
(1)利用导数公式求导数.
(2)求斜率.
(3)写出切线方程.
注意导数为0和导数不存在的情形.
【名师点睛】
熟记基本初等函数的求导公式,导数的四则运算法则是正确求导数的基础.
(1)运用基本初等函数求导公式和运算法则求函数y=f(x)开区间(a,b)内的导数的基本步骤:
①分析函数y=f(x)的结构和特征;
②选择恰当的求导公式和运算法则求导;
③整理得结果.
(2)对较复杂的函数求导数时,先化简再求导.如对数函数的真数是根式或分式时,可用对数的性质将真数转化为有理式或整式求解更为方便;对于三角函数,往往需要利用三角恒等变换公式,将函数式进行化简,使函数的种类减少,次数降低,结构尽量简单,从而便于求导.
,
免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com