骨质疏松上热敷有效果(吃得好筋骨牢骨质疏松可)
骨质疏松的定义以及对健康的影响引言:根据国际骨质疏松基金会(International Osteoporosis Foundation)的估计,全世界50 女性中,有1/5的人会经历骨质疏松。在同样年龄段的男性中,有1/3的人会经历骨质疏松[1]。骨质疏松不仅会增加骨折的风险,降低患者的生活质量和寿命,还会引起周身疼痛、身高缩短、驼背等问题。很多患者以为只要多补钙就能轻松解决骨质疏松的问题,然而要想拥有良好的骨骼健康,不单单只是一种矿物质的作用。
骨质疏松(Osteoporosis)不仅会导致骨折,还会引起一系列严重的并发症,尤其是影响到老年人的生活质量。
定义
骨密度低于年轻健康女性的平均值2.5个标准偏差或更多(T分数 <-2.5 SD),就被定义为骨质疏松症。最广泛用来检测骨密度的手段是双能射线吸收测定法 (DXA)。但仅用骨密度来预测骨折的风险并不严谨。近年来,很多的研究表明除骨密度(BMD)以外的其他因素也会导致骨折风险。这些风险因素包括年龄、性别、骨转化程度、既往骨折史、家族骨折史和生活方式的危险因素(缺乏运动、吸烟)[1]。
大家可以借助FRAX®工具来评估自己的10年骨折风险。
FRAX®工具(复制链接至浏览器)
https://www.sheffield.ac.uk/FRAX/tool.aspx?country=2
不同营养素骨密度(BMD)的影响
根据今年发表在《Lancet》上的Nutritional Intake and bone health,有大量证据表明,骨骼生长和骨质流失是评估骨折风险的两个重要因素,且都与营养摄入有关[2];正确的营养素补充和饮食结构可以帮助降低骨折的风险。那么接下来极养君就来带你全面地了解一下究竟哪些营养素和饮食模式有利于骨健康。
钙 CALCIUM
钙在各种细胞功能的调节中起主要作用,影响中枢和外周神经系统、心肌、骨骼和平滑肌以及外分泌和内分泌腺功能。钙作为羟基磷灰石晶体(hydroxyapatite)的主要成分,维持了骨骼的硬度。低钙饮食可能会通过继发性甲状旁腺甲状腺功能亢进而推动骨骼重塑,危害骨骼健康[2]。
维生素D VITMAIN D
维生素D的主要来源是皮肤暴露于UVB辐射 [290–315 nm] 后的合成的。维生素D也可以通过饮食来获得。饮食中的两种主要维生素D类固醇是维生素D2(麦角钙化醇)和维生素D3(胆钙化醇)。维生素D2来源于植物和真菌,通过麦角甾醇的辐照产生。维生素D3由7-脱氢胆固醇产生,从动物产品的饮食中获得,油性鱼、鱼油、鸡蛋和奶制品是最好的维生素D3来源。补充维生素D3和维生素D结合蛋白(DBP)之间的亲和力更强,能够帮助维持血液中25-羟基维生素D [25-(OH)D] 的浓度[8]。
维生素D的主要作用是促进肠道对钙的吸收,并维持足够的血清钙和磷酸盐浓度,使骨骼正常矿化。长期摄入不足的维生素D会导致骨骼脱矿质 。维生素D缺乏会导致钙吸收减少。
核心发现
对于有需求人群的钙和维生素D的补充剂量,该研究表明如果仅补钙,需要最低剂量1200毫克才能获得最佳治疗效果。对于钙与维生素D补充剂的组合推荐的维生素D的最低剂量为800 IU[3]。
磷 PHOSPHOROUS
人体的绝大多数磷存在于骨矿物质中(约85%),其余15%分布在软组织中,约1%存在于细胞外液中。骨矿物质由磷酸钙组成,磷在支持骨骼增强和维持方面与钙一样重要。但是,饮食中过量的磷不利于骨矿物质代谢[3]。
核心发现
现有的大多数研究表明,过量摄入磷对骨代谢产生负面影响。
小科普 >>>
钙和磷的稳态调节机制:钙和磷作为维持骨骼的重要微量元素,这两者在身体中的稳态调节主要通过肠道、肾脏和骨骼来维持。当血钙减少时,甲状旁腺激素(PTH)分泌增加,增加身体中钙的重新吸收。而FGF23是磷酸盐肾重吸收的最重要的调节剂。FGF23可以抑制PTH的作用来增加尿磷酸盐排泄[7]。
其他维生素以及营养素的影响
食物组(Food Group)对骨密度的影响
蛋白质
在过去十年中,五项系统评价和荟萃分析研究了成人BMD与膳食蛋白质摄入量之间的关联。蛋白质摄入量在每天约0.8和1.2克/千克体重之间变化。在五项RCT的荟萃分析中,较高的蛋白质摄入量与腰椎BMD增加0.52%相关(95% CI 0.06-0.97)[30]。
核心发现
每日摄入充足的蛋白质(RDA推荐量0.8g/kg)对骨骼健康可能有益处。蛋白质摄入不足可能会增加老年人摔倒和骨折的风险,但过度摄入蛋白质对骨骼的影响目前尚不清楚。
乳制品和乳制品替代品
乳制品是蛋白质和钙的来源,1升牛奶提供32-35克蛋白质,其中大部分是酪蛋白,但也包括一些含有多种促进生长元素的乳清蛋白和1200毫克钙。乳制品通常添加了钙和维生素D,减少了PTH的分泌,促进了IGF的分泌,从而减少了骨吸收标志物[33]。
乳制品替代品中,豆奶是目前唯一接近牛奶蛋白质和矿物质含量的植物性牛奶替代品。强化豆奶和牛奶的钙生物利用度相似(牛奶和豆奶都需要是强化的才是维生素D的来源)。但是,大多数植物饮料的营养品质(必须氨基酸的含量,以及生物利用度高的维生素和必需矿物质的存在和数量)与牛奶相比,都不足[34]。
水果和蔬菜
水果蔬菜中的纤维能够在大肠中发酵,从而产生短链脂肪酸,降低肠道内的容物pH值。
通过这种方式,增加钙的生物利用度[35]。据研究表明,每天食用三份或更多水果和蔬菜的女孩的骨矿物质含量(Bone Mineral Content)比食用少于三份的女孩更高[36]。
咖啡因和茶
一项荟萃分析表明,女性摄入咖啡可能与较高的骨折风险相关,但与男性无关,女性的相对风险未1.14(95% CI 1.05-1.24), 男性的相对风险为0.76(0.62-0.94)[37]。茶是类黄酮的丰富来源,包括儿茶素,可能有益于男性骨骼健康。习惯性喝茶与多个骨骼部位较高的BMD呈正相关,但和骨折风险之间的关系目前尚不清楚[38]。
核心发现
增加强化乳制品的摄入可以增加钙和维生素D的摄入, 多食用水果蔬菜可以增加纤维的摄入以提高钙的生物利用度。从健康经济学的角度来说,通过增加以上两种食物组的摄入来预防骨质疏松性骨折最经济实惠的一种方式。目前缺少足够的证据来证实关于咖啡因和茶与骨折风险之间的关系。
四大饮食结构与骨骼健康
核心发现
目前,在所有饮食模式中,只有地中海饮食对骨骼结果产生积极影响的效果最大。该饮食模式不仅还有大量蛋白质和乳制品(钙的主要来源),还包括丰富的抗氧化剂,并避免了高度加工的碳水化合物、糖和饱和脂肪的大量摄入。
其他食物及生活方式对骨密度的影响运动[44]
经常锻炼的年轻女性和男性通常比不锻炼的人获得更高的峰值骨量(最大骨密度和强度)。20岁以上的女性和男性可以通过定期锻炼来帮助预防骨质流失。锻炼还可以帮助保持肌肉力量、协调性和平衡性,从而有助于防止跌倒和骨折。这对于老年人和被诊断患有骨质疏松症的人尤其重要。
负重和阻力运动对骨骼健康的维持最有效果。负重运动主要包括散步、远足、慢跑、爬楼梯、打网球和跳舞。而阻力运动主要为举重。每日至少30分钟的运动,并从饮食中摄入足量的钙和维生素,对骨质疏松的预防最有效果。
饮食和肠道菌群的相互作用
益生菌主要存在于发酵乳制品和一些植物性食物中,如酸菜和泡菜。充足的益生菌摄入对肠道宿主有健康益处。
现存证据表明:
- 益生菌可以通过调节肠腔pH值来影响肠道;
- 分泌抗菌肽;
- 通过增加粘液产生和宿主免疫系统的调节来增强屏障功能;
- 改变肠道菌群。
但益生菌影响骨骼健康的机制尚不明确[45]。未来还需要进行良好的长期随机对照试验以评估对调节肠道微生物群组成和(或)功能的营养干预是否能够降低骨折风险。
极养视点
- 钙需要最低剂量1200毫克才能获得最佳治疗效果。当钙与维生素D组合补充时,推荐的维生素D的最低剂量为800 IU;
- 每日摄入充足的蛋白质(RDA推荐量0.8g/kg)对骨骼健康可能有益处。增加乳制品的摄入可以增加钙和维生素D的摄入, 多食用水果蔬菜可以增加纤维的摄入以提高钙的生物利用度;
- 在所有饮食模式中,只有地中海饮食对骨骼结果产生积极影响的效果最大。地中海饮食的平衡性质是保护骨骼的主要原因。该饮食模式不仅还有大量蛋白质和乳制品(钙的主要来源),还包括丰富的抗氧化剂,并避免了高度加工的碳水化合物、糖和饱和脂肪的大量摄入;
- 负重和阻力运动对骨骼健康的维持最有效果。20岁以上的女性和男性可以通过定期锻炼来帮助预防骨质流失。锻炼还可以帮助保持肌肉力量、协调性和平衡性,从而有助于防止跌倒和骨折。
文章|Jing Feng BS
校稿|Haoran PHD 编审|Xinyin PHD, RD
编辑|Jiaqi Xu BS, RD 设计|Fay
声明:本文由《极养®视界》(JiYang_Vision)首次发布,如需转载需事先取得本平台书面授权,并必须标明文章转载出处;文章版权归《极养®视界》所有,未经授权,任何个人/机构不得擅自刊登或在其他媒体上转载全部或部分文章内容。
■■
参考文献
[1] WHO. (2004). WHO scientific group on the assessment of osteoporosis at primary health care level. https://www.who.int/chp/topics/Osteoporosis.pdf.
[2] Rizzoli, R., Biver, E., & Brennan-Speranza, T. C. (2021). Nutritional intake and bone health. The lancet. Diabetes & endocrinology, 9(9), 606–621. https://doi.org/10.1016/S2213-8587(21)00119-4
[3] Clarke, B. L. (2008). Use of calcium or calcium in combination with vitamin D supplementation to PREVENT fractures and bone loss in people aged 50 years and OLDER: A meta-analysis. Yearbook of Endocrinology, 2008, 208–210. https://doi.org/10.1016/s0084-3741(08)79096-6
[4] Kemi, V. E., Kärkkäinen, M. U., & Lamberg-Allardt, C. J. (2006). High phosphorus intakes acutely and negatively affect Ca and bone metabolism in a dose-dependent manner in healthy young females. The British journal of nutrition, 96(3), 545–552.
[5] Kemi, V. E., Rita, H. J., Kärkkäinen, M. U., Viljakainen, H. T., Laaksonen, M. M., Outila, T. A., & Lamberg-Allardt, C. J. (2009). Habitual high phosphorus intakes and foods with phosphate additives negatively affect serum parathyroid hormone concentration: a cross-sectional study on healthy premenopausal women. Public health nutrition, 12(10), 1885–1892.https://doi.org/10.1017/S1368980009004819
[6] Vorland, C. J., Stremke, E. R., Moorthi, R. N., & Hill Gallant, K. M. (2017). Effects of excessive dietary phosphorus intake on bone health. Current Osteoporosis Reports, 15(5), 473–482. https://doi.org/10.1007/s11914-017-0398-4
[7] Stipanuk, M. H., & Caudill, M. A. (2013). Biochemical, physiological, and molecular aspects of human nutrition. Elsevier.
[8] Laird, E., Ward, M., McSorley, E., Strain, J. J., & Wallace, J. (2010). Vitamin D and BONE Health; potential mechanisms. Nutrients, 2(7), 693–724. https://doi.org/10.3390/nu2070693
[9] Wu, A. M., Huang, C. Q., Lin, Z. K., Tian, N. F., Ni, W. F., Wang, X. Y., Xu, H. Z., & Chi, Y. L. (2014). The relationship between vitamin A and risk of fracture: meta-analysis of prospective studies. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 29(9), 2032–2039.https://doi.org/10.1002/jbmr.2237
[10] Zhang, X., Zhang, R., Moore, J. B., Wang, Y., Yan, H., Wu, Y., Tan, A., Fu, J., Shen, Z., Qin, G., Li, R., & Chen, G. (2017). The Effect of Vitamin A on Fracture Risk: A Meta-Analysis of Cohort Studies. International journal of environmental research and public health, 14(9), 1043.https://doi.org/10.3390/ijerph14091043
[11] Charkos, T. G., Liu, Y., Oumer, K. S., Vuong, A. M., & Yang, S. (2020). Effects of Β-CAROTENE intake on the risk of fracture: A bayesian meta-analysis. BMC Musculoskeletal Disorders, 21(1). https://doi.org/10.1186/s12891-020-03733-0
[12] Stone, K. L., Lui, L. Y., Christen, W. G., Troen, A. M., Bauer, D. C., Kado, D., Schambach, C., Cummings, S. R., & Manson, J. E. (2017). Effect of Combination Folic Acid, Vitamin B6 , and Vitamin B12 Supplementation on Fracture Risk in Women: A Randomized, Controlled Trial. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 32(12), 2331–2338. https://doi.org/10.1002/jbmr.3229
[13] Garcia Lopez, M., Bønaa, K. H., Ebbing, M., Eriksen, E. F., Gjesdal, C. G., Nygård, O., Tell, G. S., Ueland, P. M., & Meyer, H. E. (2017). B Vitamins and Hip Fracture: Secondary Analyses and Extended Follow-Up of Two Large Randomized Controlled Trials. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 32(10), 1981–1989.https://doi.org/10.1002/jbmr.3189
[14] Meyer, H. E., Willett, W. C., Fung, T. T., Holvik, K., & Feskanich, D. (2019). Association of High Intakes of Vitamins B6 and B12 From Food and Supplements With Risk of Hip Fracture Among Postmenopausal Women in the Nurses' Health Study. JAMA network open, 2(5), e193591. https://doi.org/10.1001/jamanetworkopen.2019.3591
[15] van Wijngaarden, J. P., Swart, K. M., Enneman, A. W., Dhonukshe-Rutten, R. A., van Dijk, S. C., Ham, A. C., Brouwer-Brolsma, E. M., van der Zwaluw, N. L., Sohl, E., van Meurs, J. B., Zillikens, M. C., van Schoor, N. M., van der Velde, N., Brug, J., Uitterlinden, A. G., Lips, P., & de Groot, L. C. (2014). Effect of daily vitamin B-12 and folic acid supplementation on fracture incidence in elderly individuals with an elevated plasma homocysteine concentration: B-PROOF, a randomized controlled trial. The American journal of clinical nutrition, 100(6), 1578–1586. https://doi.org/10.3945/ajcn.114.090043
[16] Brzezińska, O., Łukasik, Z., Makowska, J., & Walczak, K. (2020). Role of Vitamin C in Osteoporosis Development and Treatment-A Literature Review. Nutrients, 12(8), 2394. https://doi.org/10.3390/nu12082394
[17] Zeng, L.-F., Luo, M.-H., Liang, G.-H., Yang, W.-Y., Xiao, X., Wei, X., Yu, J., Guo, D., Chen, H.-Y., Pan, J.-K., Huang, H.-T., Liu, Q., Guan, Z.-T., Han, Y.-H., Zhao, D., Zhao, J.-L., Hou, S.-R., Wu, M., Lin, J.-T., … Liu, J. (2020). Can dietary intake of vitamin c-oriented foods reduce the risk of osteoporosis, fracture, and bmd loss? Systematic review with meta-analyses of recent studies. Frontiers in Endocrinology, 10. https://doi.org/10.3389/fendo.2019.00844
[18] Booth, S. L., Tucker, K. L., Chen, H., Hannan, M. T., Gagnon, D. R., Cupples, L. A., Wilson, P. W., Ordovas, J., Schaefer, E. J., Dawson-Hughes, B., & Kiel, D. P. (2000). Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and women. The American journal of clinical nutrition, 71(5), 1201–1208.https://doi.org/10.1093/ajcn/71.5.1201
[19] Feskanich, D., Weber, P., Willett, W. C., Rockett, H., Booth, S. L., & Colditz, G. A. (1999). Vitamin K intake and hip fractures in women: a prospective study. The American journal of clinical nutrition, 69(1), 74–79.https://doi.org/10.1093/ajcn/69.1.74
[20] Mott, A., Bradley, T., Wright, K., Cockayne, E. S., Shearer, M. J., Adamson, J., Lanham-New, S. A., & Torgerson, D. J. (2019). Effect of vitamin K on bone mineral density and fractures in adults: an updated systematic review and meta-analysis of randomised controlled trials. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 30(8), 1543–1559. https://doi.org/10.1007/s00198-019-04949-0
[21] Mott, A., Bradley, T., Wright, K., Cockayne, E. S., Shearer, M. J., Adamson, J., Lanham-New, S. A., & Torgerson, D. J. (2019). Effect of vitamin K on bone mineral density and fractures in adults: an updated systematic review and meta-analysis of randomised controlled trials. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 30(8), 1543–1559. https://doi.org/10.1007/s00198-019-04949-0
[22] Koh, W. P., Wu, A. H., Wang, R., Ang, L. W., Heng, D., Yuan, J. M., & Yu, M. C. (2009). Gender-specific associations between soy and risk of hip fracture in the Singapore Chinese Health Study. American journal of epidemiology, 170(7), 901–909.https://doi.org/10.1093/aje/kwp220
[23] Zhang, X., Shu, X. O., Li, H., Yang, G., Li, Q., Gao, Y. T., & Zheng, W. (2005). Prospective cohort study of soy food consumption and risk of bone fracture among postmenopausal women. Archives of internal medicine, 165(16), 1890–1895. https://doi.org/10.1001/archinte.165.16.1890
[24] Lagari, V. S., & Levis, S. (2013). Phytoestrogens in the prevention of postmenopausal bone loss. Journal of clinical densitometry : the official journal of the International Society for Clinical Densitometry, 16(4), 445–449.https://doi.org/10.1016/j.jocd.2013.08.011
[25] Orchard, T. S., Pan, X., Cheek, F., Ing, S. W., & Jackson, R. D. (2012). A systematic review of omega-3 fatty acids and osteoporosis. The British journal of nutrition, 107 Suppl 2(0 2), S253–S260.https://doi.org/10.1017/S0007114512001638
[26] Pizzorno L. (2015). Nothing Boring About Boron. Integrative medicine (Encinitas, Calif.), 14(4), 35–48.
[27] Danks D. M. (1980). Copper deficiency in humans. Ciba Foundation symposium, 79, 209–225.https://doi.org/10.1002/9780470720622.ch11
[28] Hoeg, A., Gogakos, A., Murphy, E., Mueller, S., Köhrle, J., Reid, D. M., Glüer, C. C., Felsenberg, D., Roux, C., Eastell, R., Schomburg, L., & Williams, G. R. (2012). Bone turnover and bone mineral density are independently related to selenium status in healthy euthyroid postmenopausal women. The Journal of clinical endocrinology and metabolism, 97(11), 4061–4070. https://doi.org/10.1210/jc.2012-2121
[29] Sandstead, H. H., Prasad, A. S., Schulert, A. R., Farid, Z., Miale, A., Jr, Bassilly, S., & Darby, W. J. (1967). Human zinc deficiency, endocrine manifestations and response to treatment. The American journal of clinical nutrition, 20(5), 422–442.https://doi.org/10.1093/ajcn/20.5.422
[30] Darling, A. L., Millward, D. J., Torgerson, D. J., Hewitt, C. E., & Lanham-New, S. A. (2009). Dietary protein and bone health: a systematic review and meta-analysis. The American journal of clinical nutrition, 90(6), 1674–1692. https://doi.org/10.3945/ajcn.2009.27799
[31] Rapuri, P. B., Gallagher, J. C., & Haynatzka, V. (2003). Protein intake: Effects on bone mineral density and the rate of bone loss in elderly women. The American Journal of Clinical Nutrition, 77(6), 1517–1525.https://doi.org/10.1093/ajcn/77.6.1517
[32] Darling, A. L., Manders, R., Sahni, S., Zhu, K., Hewitt, C. E., Prince, R. L., Millward, D. J., & Lanham-New, S. A. (2019). Dietary protein and bone health across the life-course: an updated systematic review and meta-analysis over 40 years. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 30(4), 741–761.https://doi.org/10.1007/s00198-019-04933-8
[33] Rizzoli R. (2014). Dairy products, yogurts, and bone health. The American journal of clinical nutrition, 99(5 Suppl), 1256S–62S. https://doi.org/10.3945/ajcn.113.073056
[34] Geiker, N., Mølgaard, C., Iuliano, S., Rizzoli, R., Manios, Y., van Loon, L., Lecerf, J. M., Moschonis, G., Reginster, J. Y., Givens, I., & Astrup, A. (2020). Impact of whole dairy matrix on musculoskeletal health and aging-current knowledge and research gaps. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 31(4), 601–615. https://doi.org/10.1007/s00198-019-05229-7
[35] Langlands, S. J., Hopkins, M. J., Coleman, N., & Cummings, J. H. (2004). Prebiotic carbohydrates modify the mucosa associated microflora of the human large bowel. Gut, 53(11), 1610–1616. https://doi.org/10.1136/gut.2003.037580
[36] Tylavsky, F. A., Holliday, K., Danish, R., Womack, C., Norwood, J., & Carbone, L. (2004). Fruit and vegetable intakes are an independent predictor of bone size in early pubertal children. The American journal of clinical nutrition, 79(2), 311–317. https://doi.org/10.1093/ajcn/79.2.311
[37] Lee, D. R., Lee, J., Rota, M., Lee, J., Ahn, H. S., Park, S. M., & Shin, D. (2014). Coffee consumption and risk of fractures: a systematic review and dose-response meta-analysis. Bone, 63, 20–28. https://doi.org/10.1016/j.bone.2014.02.007
[38] Guo, M., Qu, H., Xu, L., & Shi, D. Z. (2017). Tea consumption may decrease the risk of osteoporosis: an updated meta-analysis of observational studies. Nutrition research (New York, N.Y.), 42, 1–10.https://doi.org/10.1016/j.nutres.2017.02.010
[39] Slavin, J. L., & Lloyd, B. (2012). Health benefits of fruits and vegetables. Advances in nutrition (Bethesda, Md.), 3(4), 506–516.https://doi.org/10.3945/an.112.002154
[40] Paccou, J., Ward, K. A., Jameson, K. A., Dennison, E. M., Cooper, C., & Edwards, M. H. (2016). Bone Microarchitecture in Men and Women with Diabetes: The Importance of Cortical Porosity. Calcified tissue international, 98(5), 465–473.https://doi.org/10.1007/s00223-015-0100-8
[41] Johansson, H., Kanis, J. A., Odén, A., McCloskey, E., Chapurlat, R. D., Christiansen, C., Cummings, S. R., Diez-Perez, A., Eisman, J. A., Fujiwara, S., Glüer, C. C., Goltzman, D., Hans, D., Khaw, K. T., Krieg, M. A., Kröger, H., LaCroix, A. Z., Lau, E., Leslie, W. D., Mellström, D., … Zillikens, M. C. (2014). A meta-analysis of the association of fracture risk and body mass index in women. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 29(1), 223–233.https://doi.org/10.1002/jbmr.2017
[42] Zibellini, J., Seimon, R. V., Lee, C. M., Gibson, A. A., Hsu, M. S., Shapses, S. A., Nguyen, T. V., & Sainsbury, A. (2015). Does Diet-Induced Weight Loss Lead to Bone Loss in Overweight or Obese Adults? A Systematic Review and Meta-Analysis of Clinical Trials. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 30(12), 2168–2178. https://doi.org/10.1002/jbmr.2564
[43] Pérez-Rey, J., Roncero-Martín, R., Rico-Martín, S., Rey-Sánchez, P., Pedrera-Zamorano, J. D., Pedrera-Canal, M., López-Espuela, F., & Lavado García, J. M. (2019). Adherence to a Mediterranean Diet and Bone Mineral Density in Spanish Premenopausal Women. Nutrients, 11(3), 555.https://doi.org/10.3390/nu11030555
[44] U.S. Department of Health and Human Services. (n.d.). Exercise for your bone health. National Institutes of Health. https://www.bones.nih.gov/health-info/bone/bone-health/exercise/exercise-your-bone-health#b.
[45] Michaëlsson, K., Wolk, A., Langenskiöld, S., Basu, S., Lemming, E. W., Melhus, H., & Byberg, L. (2014). Milk intake and risk of mortality and fractures in women and men: Cohort studies. The BMJ.https://www.bmj.com/content/349/bmj.g6015.
,
免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com