八年级上册数学十二章知识总结(八年级数学上册每一章知识要点)
第一章 勾股定理
一、勾股定理
1、直角三角形两直角边a,b的平方和等于斜边c的平方,即a2 b2=c2。
2、勾股定理的验证:测量、数格子、拼图法、面积法,如青朱出入图、五巧板、玄图、总统证法„„(通过面积的不同表示方法得到验证,也叫等面积法或等积法)。
3、勾股定理的适用范围:仅限于直角三角形。
二、勾股定理的逆定理
如果三角形的三边长a,b,c有关系a2 b2=c2,那么这个三角形是直角三角形。
三、勾股数
满足a2 b2=c2的三个正整数,称为勾股数。
常见的勾股数有:(6,8,10)(3,4,5)(5,12,,13)(9,12,15)(7,24,25)(9,40,41)„„
四、勾股数的规律
1、短直角边为奇数,另一条直角边与斜边是两个连续的自然数,两边之和是短直角边的平方。即当a为奇数且a<b时,如果b c=a2,那么a,b,c就是一组勾股数.如(3,4,5)(5,12,,13)(7,24,25)(9,40,41)„„
2、大于2的任意偶数,2n(n>1)都可构成一组勾股数分别是:2n,n2-1,n2 1 如:(6,8,10)(8,15,17)(10,24,26)„„
第二章 实数
一、实数的概念及分类
1、实数的分类
2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
( 3)有特定结构的数,如0.1010010001…等;
(4)某些三角函数值,如sin60 o 等
二、实数的倒数、相反数和绝对值
1、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a b=0,a=—b,反之亦成立。
2、绝对值
在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
3、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。
4、数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算
三、平方根、算数平方根和立方根
1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数a的平方根的运算,叫做开平方。
3、立方根
一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a 的立方根(或三次方根)。
性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
,
免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com