中考数学重难点归纳,三角函数全公式

01

锐角三角函数定义

锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

正弦(sin):对边比斜边,即sinA=a/c

余弦(cos):邻边比斜边,即cosA=b/c

正切(tan):对边比邻边,即tanA=a/b

余切(cot):邻边比对边,即cotA=b/a

正割(sec):斜边比邻边,即secA=c/b

余割(csc):斜边比对边,即cscA=c/a

02

特殊角三角函数值

03

三角函数关系

互余角的关系

sin(90°-α)=cosα, cos(90°-α)=sinα,

tan(90°-α)=cotα, cot(90°-α)=tanα.

平方关系

sin^2(α) cos^2(α)=1

tan^2(α) 1=sec^2(α)

cot^2(α) 1=csc^2(α)

积的关系

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

倒数关系

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

04

锐角三角函数公式

两角和差公式

sin(A B) = sinAcosB cosAsinB

sin(A-B) = sinAcosB-cosAsinB

cos(A B) = cosAcosB-sinAsinB

cos(A-B) = cosAcosB sinAsinB

tan(A B) = (tanA tanB)/(1-tanAtanB)

tan(A-B) = (tanA-tanB)/(1 tanAtanB)

cot(A B) = (cotAcotB-1)/(cotB cotA)

cot(A-B) = (cotAcotB 1)/(cotB-cotA)

三角和的公式

sin(α β γ)=sinα·cosβ·cosγ cosα·sinβ·cosγ cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α β γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α β γ)=(tanα tanβ tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

倍角公式

tan2A = 2tanA/(1-tan² A)

Sin2A=2SinA•CosA

Cos2A = Cos^2 A--Sin² A =2Cos² A-1 =1-2sin^2 A

三倍角公式

sin3A = 3sinA-4(sinA)³;

cos3A = 4(cosA)³ -3cosA

tan3a = tan a • tan(π/3 a)• tan(π/3-a)

半角公式

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1 cosα)/2)

tan(α/2)=±√((1-cosα)/(1 cosα))=sinα/(1 cosα)=(1-cosα)/sinα

积化和差公式

sinα·cosβ=(1/2)[sin(α β) sin(α-β)]

cosα·sinβ=(1/2)[sin(α β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α β) cos(α-β)]

sinα·sinβ=-(1/2)[cos(α β)-cos(α-β)]

和差化积公式

sinα sinβ=2sin[(α β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α β)/2]sin[(α-β)/2]

cosα cosβ=2cos[(α β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α β)/2]sin[(α-β)/2]

万能公式

sin(a) = [2tan(a/2)] / {1 [tan(a/2)]²}

cos(a) = {1-[tan(a/2)]^2} / {1 [tan(a/2)]²}

tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}

推导公式

tanα cotα=2/sin2α

tanα-cotα=-2cot2α

1 cos2α=2cos^2α

1-cos2α=2sin^2α

1 sinα=(sinα/2 cosα/2)^2

05

三角形面积定理

中考数学重难点归纳,三角函数全公式(1)

06

三角函数的图象性质

中考数学重难点归纳,三角函数全公式(2)

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页