内存泄漏如何排查(还可以这样查内存泄漏)

一 前言

对于C或c 程序员来说,面对的bug很大部分是内存操作问题,这其中比较令人头疼的就是内存泄漏了,虽然我们有valgrind 和AScan等内存问题的检测工具,但是valgrind每次输出一大堆,AScan有时候看输出结果看的是云里雾里的。再说,谁会嫌弃工具箱里面多个工具那。

二 内存泄漏的一般检查2.1 基本准备

内存泄漏问题的检查步骤,对于做过c或c 同学都比较熟悉:

  1. 首先通过top或vmstat 、或smem(本次介绍)等工具查看内存情况,看看是否出现了内存泄漏。
  2. 其次用pidstat 或top指定进程的方式,观察可以进程内存占用情况。
  3. 用memleak或gdb工具查看内存泄漏。

先上测试代码:

#include <stdio.h> #include <stdlib.h> #include <pthread.h> #include <unistd.h> #define MALLOC_SIZE 256000 int *fibo(int *n0, int *n1) { int *v = (int *) malloc(MALLOC_SIZE*sizeof(int)); memset(v, 0, MALLOC_SIZE*sizeof(int)); *v = *n0 *n1; return v; } void do_test() { int n0 = 0; int n1 = 1; int *v = NULL; int n = 2; for (n = 2; n > 0; n ) { v = fibo(&n0, &n1); n0 = n1; n1 = *v; printf("%dth => %lld\n", n, *v); //free(v) sleep(1); } } int main(void) { printf("pid=%d\n", getpid()); do_test(); return 0; }

程序比较简单,编译运行起来:

gcc memtest.c ; ./a.out

2.2 smem工具

这次用下新工具smem,这是一个python写的小工具,可以统计系统中所有进程占用的物理内存RSS、以及去掉共享内存的PSS、以及程序本身的独占内存USS的情况。

安装:

# centos 下 yum install epel-release yum install smem python-matplotlib python-tk # ubuntu 下 apt-get install smem

常用命令:

-k 带单位显示内存

root@ubuntu-lab:/home/miao# smem -k PID User Command Swap USS PSS RSS 1009 root /usr/sbin/cron -f -P 0 304.0K 399.0K 2.9M 1137 root nginx: master process /usr/ 0 196.0K 435.0K 2.1M 931 root /usr/sbin/irqbalance --fore 0 492.0K 655.0K 4.0M ....

-u -k 带单位显示每个用户的内存占用:

root@ubuntu-lab:/home/miao# smem -u -k User Count Swap USS PSS RSS systemd-timesync 1 0 764.0K 1.1M 6.7M messagebus 1 0 924.0K 1.2M 4.9M systemd-network 1 0 1.7M 2.1M 7.4M syslog 1 0 3.0M 3.1M 6.2M www-data 4 0 2.0M 4.2M 22.4M systemd-resolve 1 0 4.8M 5.8M 12.7M miao 8 0 11.0M 16.9M 49.1M postgres 7 0 9.2M 22.0M 74.5M mysql 1 0 74.0M 74.7M 80.7M root 30 0 260.7M 284.1M 429.5M

-w -k 显示系统整体内存情况类似free

root@ubuntu-lab:/home/miao# smem -w -k Area Used Cache Noncache firmware/hardware 0 0 0 kernel image 0 0 0 kernel dynamic memory 1.5G 1.3G 268.5M userspace memory 414.0M 191.5M 222.5M free memory 2.8G 2.8G 0

-k -s uss -r 按照uss的占用从大到小排序的方式展示内存的占用情况 非常实用

root@ubuntu-lab:/home/miao# smem -k -s uss -r PID User Command Swap USS PSS RSS 1298 root /usr/bin/dockerd -H 0 74.3M 74.5M 77.9M 1068 mysql /usr/sbin/mariadbd 0 74.0M 74.8M 80.7M 939 root /usr/lib/snapd/snapd 0 44.9M 45.0M 46.7M ....

好了基本命令介绍完毕,那我们来看看如何查看内存是否泄漏吧,因为内存泄漏的程序占用的内存是一直再增加的(这不是废话嘛),这样我们就可以用上面的排序命令只观察上面几个进程了。

watch smem -k -s uss -r

小技巧,watch加在命令前面,5s执行一次命令,会高亮显示改变的部分。

内存泄漏如何排查(还可以这样查内存泄漏)(1)

2.3 memleak检查

在ubuntu下安装memleak竟然很难安装,我用的是最新的服务器版本,后面在centos下安装后测试的:

[root@xxx]# python2 /usr/share/bcc/tools/memleak -p 160399 Attaching to pid 160399, Ctrl C to quit. [17:27:25] Top 10 stacks with outstanding allocations: 5120000 bytes in 5 allocations from stack fibo 0x1a [a.out] do_test 0x41 [a.out] main 0x24 [a.out] __libc_start_main 0xf5 [libc-2.17.so] [17:27:30] Top 10 stacks with outstanding allocations: 10240000 bytes in 10 allocations from stack fibo 0x1a [a.out] do_test 0x41 [a.out] main 0x24 [a.out] __libc_start_main 0xf5 [libc-2.17.so] [17:27:35] Top 10 stacks with outstanding allocations: 15360000 bytes in 15 allocations from stack fibo 0x1a [a.out] do_test 0x41 [a.out] main 0x24 [a.out] __libc_start_main 0xf5 [libc-2.17.so] [17:27:40] Top 10 stacks with outstanding allocations: 19456000 bytes in 19 allocations from stack

fibo 函数出现内存泄漏,把泄漏的字节数都打印了出来,我们改了下代码把free的注释去掉,再用memleak查看等了一会还是没有泄漏信息,说明已经修复了,如下:

[root@xxx]# python2 /usr/share/bcc/tools/memleak -p 165349 Attaching to pid 165349, Ctrl C to quit. [17:35:21] Top 10 stacks with outstanding allocations: [17:35:26] Top 10 stacks with outstanding allocations: [17:35:31] Top 10 stacks with outstanding allocations: [17:35:36] Top 10 stacks with outstanding allocations:

三 gdb 查看内存泄漏

也许你对memleak已经很熟悉了,那来看看gdb查看函数的内存泄漏方法吧,这个方法只是查看具体的一个函数是否存在内存泄漏,一定的场景下还是蛮实用的。 把代码中的 for (n = 2; n > 0; n ) 改成 for (n = 2; n > 0&& n <10; n )

(gdb) b main Breakpoint 1 at 0x400739: file memleaktest.c, line 34. (gdb) r Starting program: /home/miaohq/testcode/./a.out Breakpoint 1, main () at memleaktest.c:34 34 printf("pid=%d\n", getpid()); Missing separate debuginfos, use: debuginfo-install glibc-2.17-325.el7_9.x86_64 (gdb) call malloc_stats() Arena 0: system bytes = 0 in use bytes = 0 Total (incl. mmap): system bytes = 0 in use bytes = 0 max mmap regions = 0 max mmap bytes = 0 $1 = -136490560 (gdb) n pid=181977 35 do_test(); (gdb) call malloc_stats() Arena 0: system bytes = 0 in use bytes = 0 Total (incl. mmap): system bytes = 0 in use bytes = 0 max mmap regions = 0 max mmap bytes = 0 $2 = -136490560 (gdb) n 2th => 1 3th => 2 4th => 3 5th => 5 6th => 8 7th => 13 8th => 21 9th => 34 36 return 0; (gdb) call malloc_stats() Arena 0: system bytes = 0 in use bytes = 0 Total (incl. mmap): system bytes = 8224768 in use bytes = 8224768 max mmap regions = 8 max mmap bytes = 8224768 $3 = -136490560 (gdb) p 256000*4*8 $4 = 8192000 (gdb)

Total (incl. mmap):即本程序占用的总内存,看到明显的增加部分即为未释放的内存,程序使用的内存增加:8224768 稍大于 256000*4*8 分配的内存,内存分配需要存储链表还有一些对齐原因所以会多分配些。

free之后的场景:

(gdb) call malloc_stats() Arena 0: system bytes = 0 in use bytes = 0 Total (incl. mmap): system bytes = 0 in use bytes = 0 max mmap regions = 0 max mmap bytes = 0 $1 = -136490560 (gdb) n pid=183406 35 do_test(); (gdb) n 2th => 1 3th => 2 4th => 3 5th => 5 6th => 8 7th => 13 8th => 21 9th => 34 36 return 0; (gdb) call malloc_stats() Arena 0: system bytes = 1159168 in use bytes = 0 Total (incl. mmap): system bytes = 1159168 in use bytes = 0 max mmap regions = 1 max mmap bytes = 1028096 $2 = -136490560 (gdb)

in use bytes 为0了。

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页