高中数学第一章计数原理知识点 分类计数原理与分步计数原理
例1、有三个袋子,其中一个袋子装有红色小球20个,每个球上标有1至20中的一个号码,一个袋子装有白色小球15个,每个球上标有1至15中的一个号码,第三个袋子装有黄色小球8个,每个球上标有1至8中的一个号码。
(1)从袋子里任取一个小球,有多少种不同的取法?
(2)从袋子里任取红、白、黄色球各一个,有多少种不同的取法?
解:
(1)任取一个小球的方法可分三类,一类取红球,有20种取法;一类取白球,有15种取法;一类取黄球,有8种取法。由分类计数原理共有20 15 8=43种不同取法。
(2)取三色小球各一个,可分三步完成,先取红球。有20种取法;再取白球,有15种取法;最后取黄球,有8种取法。由分步计数原理,共有
种不同的取法。
例2、在所有的两位数中,个位数字比十位数字大的两位数有多少个?
解:分析个位数字,可分以下几类:
个位是9,则十位可以是1,2,3,……,8中的一个,故有8个;
个位是8,则十位可以是1,2,3,……,7中的一个,故有7个;
与上同样。
个位是7的有6个;
个位是6的有5个;
……
个位是2的只有1个。
由分类计数原理知,满足条件的两位数有
(个)
例3、如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联,连线标注的数字,表示该网线单位时间内可以通过的最大信息量,现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为多少?
解:沿12—5—3路线传递的信息最大量为3(单位时间内),沿12—6—4路线传递信息的最大量为4……由于以上每个线路均能独立完成这件事(传递信息),故单位时间内传递的最大信息量为3 4 6 6=19。
例4、用6种不同的颜色对下图中5个区域涂色,每个区域涂一种颜色,相邻的区域不能同色,那么共有多少种不同的涂色方法?
解:分五步进行,第一步给5号域涂色有6种方法
第二步给4号涂有5种方法
第三步给1号涂有5种方法
第四步给2号涂有4种方法
第五步给3号涂有4种方法
根据分步计数原理,共有
种不同涂法
例5、求下列各式中的
值
(1)
;(2)
;(3)
。
解:(1)由排列数公式,
得
整理得
∴
∴
或
(舍去) ∴
(2)由排列数公式,
得
整理得
解得
或
(舍去) ∴
(3)由排列数公式,得
化简得
或
∵
∴
例6、证明下列等式:
(1)
;
(2)
;
(3)
证明:(1)∵
∴
(2)
(3)∵
∴
例7、由0,1,2,3,4,5共六个数字可组成多少个没有重复数字且能被5整除的六位数?
解:组成的六位数与顺序有关,但首位不能排0,个位必须排0或5,因此分两类:第一类:个位必须排0,此时前五位数由1,2,3,4,5共五个数字组成,这五个数字的每一个排列对应一个六位数,故此时有
个六位数。第二类:个位数排5,此时为完成这件事(构造出六位数)还应分两步,第一步排首位,有4种排法,第二步排中间四位,有种排法,故第二类共有
种排法,以上两类排法都符合题目要求,所以共可组成
个。
例8、用0,1,2,3,4五个数字组成的无重复数字的五位数中,其依次从小到大的排列。
(1)第49个数是多少?(2)23140是第几个数?
解:(1)1、2是首数时各组成
个不同的五位数,故第49个数是30124。
(2)1在万位时有个;2在万位,0、1在千位的共有
个;2在万位,3在千位,0在百位的有
个,还有23104比23140小,故23140是第
(个)数。
例9、四名男生和三名女生按要求站成一排,分别有多少种不同的站法?(1)甲不站在两端;(2)甲、乙二人不能站在两端;(3)甲、乙二人之间间隔两个人;(4)四名男生站在一起,三名女生站在一起;(5)男女互相间隔开;(6)三名女生排列顺序一定。
解:(1)方法一:因为甲不在两端,分两步排队,首先从甲以外的6个人中任选两人站在左、右两端,有
种方法,然后让剩下的5个人(其中包括甲)站在中间的5个位置,有
种方法,因此共有
种站法。
方法二:因为甲不在两端,分两步排队,首先排甲,有
种方法,第二步让其他6人站在其他6个位置上,有
种方法,故有
种站法。
方法三:第一步先让甲以外的人站队,有种方法,第二步让甲插入这6个人之间的空当中,有种,故共有
种站法。
方法四:在排队时,对7个人,不考虑甲的站法要求任意排列,有种方法,但其中包括甲在左端或右端的情况
种方法,因此共有
种站法。
(2)方法一:甲、乙两人为特殊元素,先考虑甲、乙的站法,除两端的其余5个不同位置都可排甲、乙,有
种排法,再考虑其余5个元素的排法有种,根据分步计数原理,甲、乙二人不能站在两端的排法有
种。
方法二:甲、乙两人不能站在两端,应包括同时不在两端,某一人在两端,故用排异法,应减去两种情况,同时在两端,有
种,某一人在两端,有
种,故有
种不同站法。
(3)分三步:第一步,从甲、乙以外的5个人中任选2人排在甲、乙之间的两个位置上,有种方法,第二步,把甲、乙及中间2人看作一个元素与剩下的3个人作全排列,有种方法,第三步,对甲、乙进行全排列,故共有
种不同站法。
(4)方法一:男生站在前4个位置上有种站法,女生站在后三个位置上有种站法,男女生站成一排是分两步完成的,因此这种站法共有种,而女生站在前三个位置上,男生站在后四个位置上也有种站法,这两种站法都符合要求,所以四名男生站在一起,三名女生也站在一起的站法共有
种。
方法二:把站在一起的四名男生看作一个整体,站在一起的女生也看成一个整体,这样解决这个问题可分为三个步骤:选排男生、女生这两个整体,有种排法,然后排四名男生,有种排法,最后排三名女生,有种排法,根据分步计数原理,将四名男生站在一起,三名女生站在一起的站法有
种。
(5)不妨先排男生,有种排法,在四名男生间的三个间隔共有三个位置安排三名女生,有种,因此共有种排法符合要求,故四名男生三名女生相间排列的排法共有
种。
(6)在7个位置上任意排列7名学生,有排法种,由于女生的顺序一定,而在中每一种情况均以计算,故三名女生顺序一定的排法有
种。
例10、某班开设的课程有语文、数学、英语、政治、物理、化学、生物、体育共8门。若星期一上午排4节不同的课,并且规定体育课不能排在第一节及第四节,那么星期一上午该班的课程表有多少种不同的排法?
解:若不排体育课,则有
种方法;若排体育课,则有
种方法。
故共有
种不同的排法。
,
免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com