一般的积分求导公式(积分上下限函数求导)
在高等数学中有这样一个定理是关于积分上限函数求导的。内容如下:
如果函数f(x)在区间【a,b】上连续,那么积分上限的函数
在【a,b】上可导,并且它的导数
一般高等数学书上对这个定理的证明是用的定积分性质、积分中值定理以及导数的定义等知识。
但是在做题和考试中有时候会遇到更复杂的积分上限函数的求导,就需要用到这样一个公式:
当然用这个公式的前提是公式中的每一项都是有意义的才行,比如说公式中所示导数得确实存在才行。
您可能觉得这个公式不太好记忆或者不好理解,甚至考试的时候忘记了这个公式的具体内容,那么还可以用牛顿-莱布尼茨公式以及复合函数的求导法则,简单推导一下。推导过程如下图所示。
特殊的,如果φ(x)=常数a时,有
如果ψ(x)=常数b时,有
以上内容只是分享个人对积分上下限函数求导的理解,难免有不严谨或者错误之处,欢迎指正。
,免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com