伯努利方程的推导过程是什么(伯努利方程的推导过程是怎么样的)
伯努利方程(Bernoulli equation) 理想正压流体在有势彻体力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程因著名的瑞士科学家D.伯努利于1738年提出而得名,我来为大家科普一下关于伯努利方程的推导过程是什么?以下内容希望对你有帮助!
伯努利方程的推导过程是什么
伯努利方程(Bernoulli equation) 理想正压流体在有势彻体力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程。因著名的瑞士科学家D.伯努利于1738年提出而得名。
对于重力场中的不可压缩均质流体 ,方程为 p+ρgz+(1/2)*ρv^2=C 式中p、ρ、v分别为流体的压强、密度和速度;z 为铅垂高度;g为重力加速度。 上式各项分别表示单位体积流体的压力能 p、重力势能ρg z和动能(1/2)*ρv ^2,在沿流线运动过程中,总和保持不变,即总能量守恒。但各流线之间总能量(即上式中的常量值)可能不同。对于气体,可忽略重力,方程简化为p+(1/2)*ρv ^2=常量(p0),各项分别称为静压 、动压和总压。显然 ,流动中速度增大,压强就减小;速度减小, 压强就增大;速度降为零,压强就达到最大(理论上应等于总压)。飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小 ,因而合力向上。
据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理。在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间。在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项。 图为验证伯努利方程的空气动力实验。 补充:p1+1/2ρv1^2+ρgh1=p2+1/2ρv2^2+ρgh2(1) p+ρgh+(1/2)*ρv^2=常量 (2) 均为伯努利方程 其中ρv^2/2项与流速有关,称为动压强,而p和ρgh称为静压强。 伯努利方程揭示流体在重力场中流动时的能量守恒。
免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com