集成电路制造技术工艺原理(基于开关电路的DNA计算研究取得进展)

近日,中国科学院上海高等研究院光源科学中心物理生物学研究室、中国科学院上海应用物理研究所和上海交通大学合作开发了一种基于DNA链置换反应的开关电路来实现数字运算与常用的逻辑门电路相比,开关电路结构精简,可以用最少的DNA序列实现高信噪比和快速计算的分子电路他们展示了迄今为止最为快速的4位平方根运算相关论文以 Implementing digital computing with DNA-based switching circuits为题发表于《自然-通讯》(Nature Communications),王飞和吕慧为共同第一作者,樊春海与王丽华为共同通讯作者,今天小编就来说说关于集成电路制造技术工艺原理?下面更多详细答案一起来看看吧!

集成电路制造技术工艺原理(基于开关电路的DNA计算研究取得进展)

集成电路制造技术工艺原理

近日,中国科学院上海高等研究院光源科学中心物理生物学研究室、中国科学院上海应用物理研究所和上海交通大学合作开发了一种基于DNA链置换反应的开关电路来实现数字运算。与常用的逻辑门电路相比,开关电路结构精简,可以用最少的DNA序列实现高信噪比和快速计算的分子电路。他们展示了迄今为止最为快速的4位平方根运算。相关论文以 Implementing digital computing with DNA-based switching circuits为题发表于《自然-通讯》(Nature Communications),王飞和吕慧为共同第一作者,樊春海与王丽华为共同通讯作者。

DNA计算旨在利用DNA分子反应来实现数字运算功能,是生物计算领域的重要组成部分。特别的,DNA链置换反应为构建常温下运行的复杂数字电路提供了重要工具。DNA链置换反应是利用DNA分子杂交的自由能差异,以一条单链序列将另一条单链从杂交DNA双螺旋结构中取代下来用于后续反应,具有精确的序列正交性。然而,迄今为止的DNA数字运算电路均基于逻辑门来实现,电路较为复杂,而随着参与反应的DNA链数目增加,其运算速度和信噪比均受到限制。而开关电路则是由信息论创始人香农(Claude Elwood Shannon)在电子电路发展的早期阶段就提出来的一种方法,可以高效、经济地实现任意数字功能,是构成现代通讯的基础。受此启发,樊春海团队提出了一种模块化的DNA分子开关,通过构建DNA开关电路在实验上实现了任意功能的数字运算。

类似于电子开关电路,该DNA开关电路通过开关信号控制电流信号的传输,电流信号传输的方向可以通过反应路径中分子自由能的差异来精确控制。上游开关仅具有S结构域响应开关信号,而下游开关具有C结构域和S结构域分别响应上一级的电流信号和自己的开关信号。其中,S域实现功能控制,C域实现电流信号传输。利用DNA分子开关,他们设计了一个功能完备的“开关画板”,任意的逻辑功能均可通过真值表到“画板”上电流通路的映射实现。该DNA开关电路在实验上可实现包括简单逻辑运算、扇入扇出结构、复杂组合逻辑电路、全加器、4 bit开根号运算等多种电路结构和功能。所有电路的运算时间均在10分钟以内,展示了迄今为止最快的复杂DNA数字运算。

DNA开关电路作为一种新的DNA计算体系实现方式,为发展分子计算机和开发具有综合决策能力或复杂行为能力的纳米机器奠定了基础。

(来源:中科院之声)

版权声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页