数是万物本质什么意思(数万物皆数)
目录
自然数、奇数和偶数、素数(质数)、完全数、亲和数、调和数、快乐数、伤心数、形数、正数和负数、代数、代数数、2进制数、因数、分数、小数、整数、有理数、无理数、超越数、实数、虚数、复数。
自然数也称为计数数,一个自然数是数轴或连续统(实数的无穷)上的任意正整数。但零是否属于自然数依然有争议。
奇数和偶数奇数(odd)数学术语 ,口语中也称作单数, 整数中,能被2整除的数是偶数(even),不能被2整除的数是奇数(odd),奇数个位为1,3,5,7,9。偶数可用2k表示,奇数可用2k 1表示,这里k就是整数。
素数(质数)只能被1和自身整除的正整数。与之相对的是合数。大部分自然数都能够分解成更小的部分,如100=25*4,或100=50*2,如果将上述等式中的各个因数进一步分解成更小的因数,我们最终会得到素数(不能再分解)分解式:100=2*2*5*5。素数不能被分解。当数学家试图列出所有的素数时,大素数的寻找似乎变得有点困难。如17463991229是一个素数,只需试着用所有小于它的整数去除这个整数,发现除了1没有其他因数,就可以宣布它是一个素数。
其表达式的结果是整数,所以6是调和数。
前几个调和数是: 1,6,28,140,270,496,672,1638,2970,6200,8128,8190。
快乐数和伤心数任意取一个自然数,求它的各个数字的平方之和,再如此继续,如果最终得到1,那么这个数就是快乐数,如果最终不能得到1,就叫伤心数。如,对于28,2² 8²=68→6² 8²=100→1²=1。
对于37,3² 7²=58→5² 8²=89→8² 9²=145→1² 4² 5²=42→4² 2²=20→2²=4→4²=16→1² 6²=37,最终不能得到1,所以37是一个伤心数。
形数形数是能够摆放为一个几何图形的数。如你有一定数量的石头,可以把它们摆成等边三角形,或者正方形,或者五边形等,而这个数就称为形数。形数是数论的一个重要分支。如任何平方数都是两个三角数的和,如下图5²=10 15。
另外的一个例子,从1开始,相继连续的奇数之和是平方数:1=1²,1 3=2²,1 3 5=3²,1 3 5 7=4²…
正数和负数
正数(positive)是比零大的数,负数(negative)是比0小的数。
正数表示盈利几个单位,负数则表示负债几个单位。
代数纯数学的一个重要分支,主要研究数的运算和关系。初等代数研究变量表达式的运算规则。高等代数则研究除了数之外的数学对象和构造之间的运算和关系。
代数数是指整系数非零多项式的根。也就是说代数数是式项式议程的解,如x²-2=0,解是x=√2。所有的有理数都是代数数,而无理数则 可能是代数数,也可能不是。一个最著名的代数数是黄金比率(1.6180339...),一般写作ø。
2进制数一种只包含0和1的计数系统。正如10进制数中有个位(10^0)、十位(10^1)和百位(10²)等一样,2进制数中也有个位(2^0)、十位(2^1)和百位(2²)等。例如7的2进制表示111,也就是1*2^0 1*2^1 1*2²。
因数假如a*b=c(a、b、c都是整数),那么我们称a和b就是c的因数。
分数数学的起点是自然数,0、1、2、3,…但很多情况下则是落在自然数之间,这种方法可以用分数或小数来度量。自然数可以被等分为分数。
小数数轴上任何带有小数点的数。自然数可以被等分为分数,小数可以把这种分数表达得更准确。
整数任一自然数(用来计数的数,如1、2、3、4、5等)、0或负的自然数。
有理数可以被表示为数轴上两个正整数的比值的数,或者更简单地说,就是任意可以被写作分数的数,包括整数。有理数可以被认为是有限或循环小数。
无理数不能表示为数轴上两个整数的比值的数。最常被提到的无理数是π和√2。确定一个数是否是无理数的一个好方法是看其小数部分是否不重复。大部分实数是无理数。
超越数任何不能表示为整系数非零多项式的根的数,也就是非代数数。或者说,给定一个数α,如果不能使任何整数系数的方程f(x)=0是α的根,那就称α为超越数。π是最著名的超越数。根据其定义,π不能满足方程π²=10。大部分实数是超越数。
实数任何可以被表示为数轴或连续统上的一个点的数。实数包括所有有理数和无理数。
虚数平方后等于负数和数。由于没有实数平方后等于负数,所以数学家提出虚数单位i的概念,满足i*i=-1或i=√-1。虚数能够使x²=-1之类的方程有解。表示√-1的虚数能够帮我们解决很多原来无法解决的问题,它在很多领域里都有应用。
复数包含实部和虚部的任一数,如a bi,其中a和b表示任意实数,i表示√-1。
,
免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com