数据分析业务指标怎么建立(想要做好数据看板)
随着短视频的发展,短视频数据指标体系也越发受到运营人员的关注,通过数据看板,发现用户关注指标,提升用户粘性,是需要梳理的数据指标体系之一那么,该如何构建指标体系,梳理出可行的数据看板作者结合自己的实际经验,与你分享相关方法,今天小编就来说说关于数据分析业务指标怎么建立?下面更多详细答案一起来看看吧!
数据分析业务指标怎么建立
随着短视频的发展,短视频数据指标体系也越发受到运营人员的关注,通过数据看板,发现用户关注指标,提升用户粘性,是需要梳理的数据指标体系之一。那么,该如何构建指标体系,梳理出可行的数据看板。作者结合自己的实际经验,与你分享相关方法。
最近在做短视频的业务数据看板,主要是面向短视频创作者,通过梳理用户关注的指标,搭建一套能够帮助用户成长,增强用户粘性的指标看板。
这虽然是我第一次做业务型的指标看板,但我知道工欲善其事,必先利其器。因此我翻阅了一些之前学习的方法,也查阅了一些前辈的资料,结合所学和实际案例,总结了如何梳理业务指标体系的方法。
首先我们先明确指标体系的定义,再思考为什么要梳理指标体系,梳理指标体系的时候要把握什么原则,最后我会讲解通过什么方法可以构建指标体系。
一、什么是指标体系指标体系是一系列用于衡量业务发展的指标的集合,是把数据指标系统化的组织起来。
一般情况下,指标体系由北极星指标 核心指标,以及各核心指标下子指标构成。可以理解成是一个层层嵌套的公式或树结构。
通过指标体系可以帮助业务相关人员了解业务发展、定位业务问题,找到业务发展的机会,指导业务的决策。
当我们了解指标体系的定义后,不知道你是否想过为什么要梳理体系呢?下面我说下我个人的见解。
二、为什么要梳理指标体系1. 了解业务指标表现,指引业务决策发展
我把业务指标分为静态描述型指标和动态指导型指标。
所谓静态描述就是描述业务真实情况,比如创作者有多少粉丝,每一个视频获得了多少点赞、评论、分享等等,这些指标里面,很多指标可能是虚荣指标,即你看到指标后并不能立马采取任何行动,你甚至也不知道这个指标能为你带来多大的影响。
虽然存在大量的虚荣指标,但是这些虚荣指标又是不得不存在的。那么虚荣指标能做什么呢,就需要关注第二个类型的动态指导型分析型的指标。
动态指导型分析型的指标,比如多维度的分析找到问题和改进点,或者是数据的预测,通过这些指标,我们将虚荣指标的来龙去脉进行了拆解和分析,让我们得以掌控这些指标,进而采取行动。
比如,当我知道每一个视频带来的粉丝量,以及总粉丝的黏性(比如最近30天参与消费内容的占比),我就能知道应该如何调整我的视频迎合用户从而获取更多的粉丝,也从而知道我的粉丝给我带来的价值是多少,剩下多少粉丝是沉默用户。
2. 发现问题,定位问题,解决问题
在实际的业务进行中,问题的发现一开始往往只是一个点,但要定位问题往往需要一条线或者一个面的配合。
比如,发现最近粉丝取消关注量大增,如果只是盯着粉丝取关量这个数据是无法知道原因,解决问题的。
这时候就需要通过指标体系,了解粉丝取关的时刻,以及粉丝在取关前的行为,比如,粉丝是在观看什么视频后取关。
3. 打造增长模型
在增长黑客一书中,作者提到“增长模型的精髓是将生意提炼和总结成一个数学公式,从而帮助你用全面、简单和结构化的方式去思考增长”。
而指标体系实际上就是一个增长模型。
就像谷歌的广告产品的利润增长模型一样,通过这个增长模型,你可以理解过去的产品决定,明确产品的优势和劣势;可以获得决策工具,理解新的决策可以影响模型的哪一个变量,这个变量是不是影响最大的。
了解指标体系的重要性后,要搭建指标体系,我们还需要知道如何选择指标,以下两条原则供你参考。
三、指标选择的原则卓越指标体系的展现:能用某种(业务/计算)逻辑(符合MECE原动态变化,能够落实成业务策略)将零散的指标串联起来、能协同并制约各业务模块、能牵引业务增长方向以及能准确度量业务健康度。
因此,指标的选择需要遵循两个大的原则。
1. 好的数据指标是有助于业务的发展的
这需要数据指标符合业务目标,数据指标可衡量业务真实情况。
所谓需要符合业务目标,指的是在指标的搭建过程中,明确业务的战略目标,并根据目标制定出业务发展的北极星指标,同时,围绕着北极星指标展开,拆解出能推动北极星指标增长的核心指标。
以短视频为例,对于创作者前期来说,前期的业务目标就是获取粉丝量的增长,那么围绕着这个目标,展示第一关键指标就是粉丝数。
同时,数据指标需要可衡量业务真实的情况。数据是客观的描述和分析过程,如果数据无法衡量业务的真实情况,而是去扭曲数据迎合用户和企业领导,那么数据就不再有真实的意义了。
比如,我们之前在讨论分析用户在视频每一秒的留存情况时,由于很多视频用户都是在第一秒划走,占比较高,因为是否要调整这里让数据“更好看”成为了我们讨论的 焦点。
但站在数据部门的角度上,我们认为,第一,用户在第一秒离开率高,代表视频第一秒对用户没有吸引力或者视频本身推荐不符合用户兴趣偏好,尤其是如果是视频本身开头做的不够有吸引力,这对于用户视频的优化是具有指导意义的。
第二,数据需要反应真实的情况,用户才能在数据中找到问题,解决问题,如果扭曲数据,那么问题永远不会被发现,问题也就永远不会被解决。
2. 好的指标需要具备可操作性
可操作性也同时包括两个方面,数据指标可以被衡量和可以通过数据指标改变行为从而干预指标的变化。
首先,我们来看看什么是数据指标可以被衡量。
很多同学可能会说,数据指标不是本身就是可以被衡量的吗?这还需要强调吗?
在《精益数据分析》一书中,作者提到,一个好的指标包括如下特征:
1)可比较的,比较可以是时间线上的对比,群体对比,竞争产品之间的对比,通过对比能够洞察产品的实际走向。
比如,我们在计算短视频在每一秒的留存数据时,如果仅仅计算当前作品的,用户可能很难理解每一个数据代表的实际水平。
而如果,能够增加与整体行业的对比,或者是头部大V的对比,用户就能够很好的理解自己所处的水平。
示例:抖音中创作者视频每秒视频留存率与大盘同时长作品对比
2)好的数据指标是简单易懂的,如果指标不能很容易被理解,实际上用户可能也很难真正利用起来。
3)好的数据指标是一个比率。
想象一下,如果我告诉你视频每秒的离开用户的绝对值,比如,第一秒是100个,第二秒是80个…你对这个数据会有什么直观感受?如果我再告诉你,视频每秒的离开用户占总播放用户的比率,你是不是就能直观的了解到每秒对于用户的真实影响。
所以,比率是天生的比较性指标,对于用户来说,可操作性更强,能更快的让受众理解和行动。
所以,一个可被衡量的数据指标指的就是具有比较性,简单易懂的指标,他们常常是一个比率。
其次,可以通过数据指标改变行为从而干预指标的变化。
可以改变行为的指标,包括帮助用户找到方向,找到问题,甚至是预测趋势预测热点等等。而如果不考虑指标的可操作性,只是展示越来越多的指标,用户却无法干预,这对于用户来讲,可能只是甜蜜的负担。
就像我们在看一个产品做的好坏或者去对比竞争产品的时候,不是看功能越多越好,而是看产品基于用户场景是否有足够的覆盖和问题解决能力是一样的。
举个例子,在统计粉丝的来源渠道时,QQ短视频的播放渠道包括关注页、圈子、广场等等,所以,在统计播放指标以及粉丝的时候是否需要展示来源渠道分布数据呢?
在做最终的决定前,我们来问自己一个问题,如果我分析了这个数据,用户可以做什么,用户可以选择渠道吗?
答案是不能,实际上,用户的视频在哪里播放?什么时候播放给谁?都是由内容推荐侧决定的。所以,用户拿到这个数据不仅什么都做不了,反而会产生如何干预的疑惑。而真正需要这个数据的,实际上是内部运营、推荐侧等。
哪些是用户可以干预的呢,比如粉丝活跃时段,通过了解粉丝的活跃时段,就可以选择在高粉丝活跃时段的时刻发布作品,从而获取到更多的流量曝光。
但在实际构建指标体系和建设平台看板时,我们还需要关注一类容易被我们忽视的指标。站在用户的视角这一类指标极有可能会被我们忽视,但是,尤其是面对C端B端用户去建设指标和看板时,我们还需要想清楚一个点。
即,我们的看板一方面承载了用户的期望,能够解决用户的问题,同时,他实际还要承载平台方的目标和期望,即留存用户、让用户持续的活跃。
因此,基于这样的目标,我们还会有第三类指标,这些指标描述了事实,但实际上用户并不能对他们直接进行操作,但这些指标的提供,却能对用户产生情绪价值。
比如,在短视频创作者中心,B站所提供的创作者自己所在垂类的排名就是一个很好的例子。
知道如何选择指标后,下面我们就可以正式开始构建指标体系。
四、如何构建指标体系构建指标体系的方法常见的包括OSM策略、UJM用户旅程地图以及增长模型推演。
1. OSM策略
OSM策略可以拆为3个部分。O指的是Object 即目标,指业务要实现的目标;S是Stratedy 策略,指为了达到目标所进行的行动策略;M是Measure 度量,用来衡量策略是否有效,目标是否达成的指标。
一般情况下,业务的O也就是业务的北极星指标,北极星指标代表着业务的核心价值被用户体验到的理想状态。在短视频的例子中,前期的O是累计粉丝量(或月活跃粉丝量)。
但仅仅从北极星指标拆解策略可能较为困难,因为北极星指标本身可能不具备较高的可操作性,比如电商业务的总销售额、滴滴业务的月活跃用户数,这些指标能够较好的反应业务发展,但是却难以直接操作。
因此,我们会对指标进行拆解,将指标拆解到可操作的层级。比如一般情况下,GMV的拆解公式为:GMV=用户数*转化率*客单价,再分别从这三个细分的维度指标制定策略进行干预,同时对策略对应指标进行分析,就能构建基础的电视指标体系。
以短视频创作者中心为例的OSM拆解:
1)拆解目标
对于创作者来说,粉丝量=消费用户数*转化率 -取关粉丝量(消费指播放、评论、点赞、分享等行为的集合)。因此为了达到粉丝量增长的最终目标,需要从消费用户数、转化率以及取关下手。目标为提升用户数、提升转化率以及降低取关粉丝量。
2)制定策略
基于不同目标我们分析用户可采取策略。
首先,提升消费用户数。
提升消费用户数,需要保证持续高质量的内容产出、同时,结合算法推荐侧的逻辑,我们知道除了视频本身的完播率,播放量,视频的互动数据最终也会作为是否持续推荐的数据输入。因此,作为创作者,我们还需要去引导观众更多的互动。
比如,在视频中插入一些有争议的话题,比如通过马甲号在评论区挑起话题进行互动等等。
其次,是提升转化率。
要提升转化率,则需要保证目标受众是否看到内容,以及不断的进行用户体验的升级,目标受众是否能够看到内容,其实更多的还是受推荐侧的能力影响,但在用户可自行进行投放时,通过目标用户属性进行精准的用户选择也是一种方式。
另外,在创作定位不够明确时,用户也可以通过观察内容消息用户的属性,反向调整内容。
而用户体验的升级,则是首先需要知道什么是体验的升级,对于用户来说,何时是用户获取到了你的创作的核心价值其实就是体验升级的关键点。
也就是什么时候是用户的AHA时刻。所谓AHA时刻,我们以前有讲过,就是指用户在某一刻获取到产品之于他的核心价值,从而意识到原来这个产品能够带给我这些价值的这样一个时刻。
只有用户找到这个时刻,他才可能留存,在短视频里,也就是这个时刻用户才可能做出互动动作或持续观看或成为粉丝。
一般来说,比较明显的一些能够体现用户获取到内容核心价值的表现,比如用户完整观看作品,点赞、评论、分享、关注等行为的发生,其实都说明了用户获取到了他想要的价值,这些价值不限于消磨时间,快速获取知识,链接更多有价值的关系。
因此,捕捉到什么时刻是用户的AHA时刻实际上就是获取用户产生这些行为的时刻,从而理解如何为用户提供价值。
最后,是降低取关粉丝量。
一般情况下保持内容定位、内容调性的统一,持续产出是降低粉丝取关比较稳妥的办法。
这样,我们就确定了针对目标的策略,当然这些策略可能还可以拆分的更细,但我们在这里就打个样,不再继续拆分了。
1)制定度量体系
确定策略之后我们就可以针对每一部分策略设计度量即指标了。
针对内容消费的评估,我们可以从播放量、点赞量、评论量、分享量、完播率、均播时长、主页访问量、关注量等指标维度进行度量。
针对目标用户属性,我们可以通过画像分析进行度量,包括用户的性别/年龄/地域/兴趣/活跃度/用户活跃时段/用户黏性分析等。
针对体验升级,可以分析用户点赞/关注等关键行为发生时刻、完播率与视频时长关系等,帮助创作者理解作品的价值点。
针对内容定位的统一,可以对取关量进行监控,并分析取关和作品之间的直接关系,同时对作品观众和粉丝画像进行对比分析。
这是最终我们通过OSM方式拆解出来的指标大图如下:
2. UJM用户旅程
除了OSM策略拆解,对于一些强流程的业务,我们还可以通过UJM用户旅程地图来构建指标体系。
用户旅程指的是围绕着北极星指标,拆解和记录用户从对产品一无所知到体验到产品的核心价值要经历的步骤。有点像用户体验地图,用户体验地图也是会去拆解和记录用户在产品中经历的步骤。
为了不让大家会对这两个概念产生混乱,需要解释的是,这两者的目标是不一样的。用户旅程地图,主要通过绘制用户旅程,找到每一阶段用户的行为和目标,最终确定关注的指标。
而用户体验地图,则更侧重于基于一个本身的用户目标,拆解用户在产品中的步骤以及触点,通过用户的情绪,最终找到产品中体验好和不好的点,从而发现用户的痛点和产品的机会。
以短视频为例的UJM用户旅程地图
对于创作者来说,用户体验到自己账号的核心价值,实际上就是要分析用户如何发现作品查看作品并一步步成为粉丝并活跃的过程。
我们把整个路径拆分为5步,包括用户来到平台、闲逛、看我的作品、关注我、连续看我的作品5个阶段。
我们这里是创作者视角的指标分析,而不是平台视觉的分析,所以在路径、关键行为以及关键指标上都是围绕着创作者展开。
在第一步,看的阶段,用户通过主动搜索、朋友分享、信息流推荐来到创作者作品页。此时,创作者关注的指标可能主要为来源渠道。
用户也可能是通过闲逛进入,闲逛对创作者来说有用的指标是了解用户的兴趣偏好,活跃时段,活跃分层。
接着用户开始观看创作者的作品,这个过程中用户除了播放这个动作,还有产生一些互动行为,而这些互动行为正向的反映了用户对于作品的情绪,创作者可以通过了解这些互动行为的数据,以及数据发生的时刻,来了解自己作品的表现,并对自己的作品进行调整优化。
如果你的作品对用户吸引力足够大,用户可能直接点击关注你的账号,或者,有些用户会先进入主页确定账号的价值,最终选择是否关注。
所以在这个过程中,进入主页的访问量,关注的用户数就是创作者最为关注的指标。
最终,通过UJM旅程地图的分析,我们分析了完整的用户旅程,并基于旅程构建了完整的指标体系。
3. 增长模型推演
前面我们讲了OSM策略和UJM旅程地图的方法,实际上我们还可以通过增长模型推演的方式进行。
比如我们经常提到的AARRR模型,就是将用户在产品的全生命周期分为了5个阶段,获取、活跃、留存、获取营收、自传播,而每一阶段都有不同的策略和关注点,也就对应不同的指标。
比如,获取阶段,我们为了让用户知道我们的存在,获取到我们的潜在用户,我们可能会通过不同渠道的引流投放,那么衍生出来的指标就包括,新增用户总量、趋势、渠道来源,渠道转化效果等等。
比如在进行平台产品的数据使用监测中,利用AARRR理论,贴合我们自身的产品,用户的生命周期包含获取、活跃、留存三个阶段。
平台北极星指标为重点用户(用户分群)月活跃用户占比。围绕着这个指标,我们构建出如下图的增长模型。
接下来,围绕着模型,我们就可以定义出每一步的关键指标,并衍生出关键细分指标。基于这些指标我们已经可以开始搭建数据看板了。
总结实际上这是我第一次真实的贴近业务去帮助业务搭建指标体系和搭建看板,之前的产品更多的是工具型的产品。以前也为自己的工具型产品搭建过一些监控看板,但是没有像现在这样系统性的结合一些方法论进行过梳理。
本文我为大家讲解了关于指标体系的定义,以及如何构建指标体系,这是在我们实际做数据看板之前需要做好的工作。
这篇文章是我个人学习以及思考的总结,希望这篇文章也能够对你有帮助。
本文由 @糖糖是老坛酸菜女王 原创发布于人人都是产品经理,未经作者许可,禁止转载。
题图来自Unsplash,基于CC0协议。
该文观点仅代表作者本人,人人都是产品经理平台仅提供信息存储空间服务。
免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com