高中数学三角恒等换公式(数学学习高中数学知识)

高中数学三角恒等换公式(数学学习高中数学知识)(1)

全文共1107字,预计阅读时间:3分钟

我们已经在三角函数的数学意义、三角函数的概念等基本知识的基础上学习了同角三角函数之间的基本关系以及使用三角函数时常用的诱导公式,并研究了三角函数的图像和性质,同学们记得多翻看推文进行复习哦!

上周,我们学习了差角公式、和角公式、倍角公式和半角公式,不知道大家记住了么?

数学学习 | 高中知识点解析与讲解 - 恒等变换(正弦、余弦)公式推导(建议收藏!)

为了帮助同学们更好的理解这些公式,我们将对三角恒等变换公式进行一下推导,快看下去吧!

高中数学三角恒等换公式(数学学习高中数学知识)(2)

余 弦 公 式

首先,上周我们学习了差角的余弦公式是“对于任意角a和b有"cos(a-b)=cosacosb sinasinb",我们依然利用单位圆对它进行推导:

如下图:

高中数学三角恒等换公式(数学学习高中数学知识)(3)

以坐标系原点O为圆心做单位圆,该单位圆与x轴正半轴相交于点A,再以x轴非负半轴为始边分别做角α,β,α-β,它们的终边分别与单位圆相交于点P1,A1,P;

我们可以知道它们的坐标分别为P1(cosα,sinα),A1(cosβ,sinβ),P(cos(α-β),sin(α-β)),并可以得到∠A1OP1=∠AOP=α-β;

根据SAS可得到三角形A1OP1与三角形AOP全等,进而得到A1P1=AP;

根据两点间距离公式(平面上任意两点P1(x1,y1),P2(x2,y2),P1P2=√[(x2-x1)^2 (y2-y1)^2],该公式可以由勾股定理证明,此处省略),我们可以得到(cosα-cosβ)^2 (sinα-sinβ)^2=[cos(α-β)-1]^2 [sin(α-β)]^2;

化简后即可得到cos(α-β)=cosαcosβ sinαsinβ。

其次,我们证明和角的余弦公式”对于任意角a和b有cos(a b)=cosacosb-sinasinb“:

在差角的余弦公式cos(a-b)=cosacosb sinasinb中,我们将b改成-b,便可以得到cos(a b)=cos[a-(-b)]=cosacos(-b) sinasin(-b)=cosacosb-sinasinb。

高中数学三角恒等换公式(数学学习高中数学知识)(4)

正 弦 公 式

首先,我们证明差角的正弦公式”对于任意角a和b有sin(a-b)=sinacosb-cosasinb“:

由诱导公式六,我们可以得到sin(a-b)=-cos(π/2 a-b);

再根据差角的余弦公式,我们可以得到sin(a-b)=-cos(π/2 a-b)=-[cos(π/2 a)cosb sin(π/2 a)sinb];

再根据诱导公式六,我们可以得到sin(a-b)=-cos(π/2 a-b)=-[cos(π/2 a)cosb sin(π/2 a)sinb]=-(-sinacosb cosasinb)=sinacosb-cosasinb。

其次,我们证明和角的正弦公式”对于任意角a和b有sin(a b)=sinacosb cosasinb“:

在差角的正弦公式sin(a-b)=sinacosb-cosasinb中,我们将b改成-b,便可以得到sin(a b)=sin[a-(-b)]=sinacos(-b)-cosasin(-b)=sinacosb cosasinb。

高中数学三角恒等换公式(数学学习高中数学知识)(5)

今天,我们对三角恒等变换公式中的余弦公式和正弦公式进行了推导,希望可以帮助同学们更好的进行高中数学学习哦!

同学们有任何不懂的内容可以留言提问,如果有需要的话我们会有习题类推文哦!

下一期我们将继续讨论数学学习的相关问题呀!如果你想知道更多,请关注我们哦!

本文由如意王工作室原创,欢迎关注,带你一起长知识!

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页