初三数学二次函数知识点讲解(初中数学二次函数知识点梳理汇总)

初三数学二次函数知识点讲解(初中数学二次函数知识点梳理汇总)(1)

一、定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:y=ax² bx c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大),则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

二、二次函数的三种表达式

一般式:y=ax² bx c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)² k[抛物线的顶点P(h,k)]

交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a

k=(4ac-b²)/4a

x₁,x₂=(-b±√b²-4ac)/2a

三、二次函数的图像

在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

四、抛物线的性质

1.抛物线是轴对称图形。对称轴为直线x=-b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)。

2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b²)/4a)。当-b/2a=0时,P在y轴上;当Δ=b²-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)。

6.抛物线与x轴交点个数:

Δ=b²-4ac>0时,抛物线与x轴有2个交点。

Δ=b²-4ac=0时,抛物线与x轴有1个交点。

Δ=b²-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b²-4ac的值的相反数,乘上虚数i,整个式子除以2a)

五、二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax² bx c。

当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax² bx c=0。

此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax²,y=a(x-h)²,y=a(x-h)² k,y=ax² bx c(各式中,a≠0)的图象形状相同,只是位置不同。

它们的顶点坐标及对称轴如下表:

初三数学二次函数知识点讲解(初中数学二次函数知识点梳理汇总)(2)

当h>0时,y=a(x-h)²的图象可由抛物线y=ax²向右平行移动h个单位得到。

当h<0时,则向左平行移动|h|个单位得到。

当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)² k的图象。

当h>0,k<0时,将抛物线y=ax²向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)² k的图象。

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)² k的图象。

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)² k的图象。

因此,研究抛物线y=ax² bx c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)² k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax² bx c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b²]/4a).

3.抛物线y=ax² bx c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.

4.抛物线y=ax² bx c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b^2-4ac>0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax² bx c=0(a≠0)的两根.这两点间的距离AB=|x₂-x₁|。

当△=0.图象与x轴只有一个交点;当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

5.抛物线y=ax² bx c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b²)/4a.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax² bx c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)² k(a≠0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0).

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

欢迎关注微信公众号 :中学高分宝典

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页