r t k教程:初学者不能不会的NLTK

欢迎关注同名AI小白入门。跟着博主的脚步,每天进步一点点哟

r t k教程:初学者不能不会的NLTK(1)

本文介绍了NLTK的使用方法,这是一个被称为“使用Python进行计算语言学教学和工作的绝佳工具”。

简介

NLTK被称为“使用Python进行计算语言学教学和工作的绝佳工具”。它为50多种语料库和词汇资源(如WordNet)提供了易于使用的界面,还提供了一套用于分类,标记化,词干化,标记,解析和语义推理的文本处理库。接下来然我们一起来实战学习一波~~

官网地址:http://www.nltk.org/

Github地址:https://github.com/nltk/nltk


实战

1.Tokenize

# 安装:pip install nltk

import nltk

sentence = 'I love natural language processing!'

tokens = nltk.word_tokenize(sentence)

print(tokens)

['I', 'love', 'natural', 'language', 'processing', '!']

2.词性标注

tagged = nltk.pos_tag(tokens)

print(tagged)

[('I', 'PRP'), ('love', 'VBP'), ('natural', 'JJ'), ('language', 'NN'), ('processing', 'NN'), ('!', '.')]

3.命名实体识别

# 下载模型:nltk.download('maxent_ne_chunker')

nltk.download('maxent_ne_chunker')

[nltk_data] Downloading package maxent_ne_chunker to

[nltk_data] C:\Users\yuquanle\AppData\Roaming\nltk_data...

[nltk_data] Unzipping chunkers\maxent_ne_chunker.zip.

True

nltk.download('words')

[nltk_data] Downloading package words to

[nltk_data] C:\Users\yuquanle\AppData\Roaming\nltk_data...

[nltk_data] Unzipping corpora\words.zip.

True

entities = nltk.chunk.ne_chunk(tagged)

print(entities)

(S I/PRP love/VBP natural/JJ language/NN processing/NN !/.)

4.下载语料库

# 例如:下载brown

# 更多语料库:http://www.nltk.org/howto/corpus.html

nltk.download('brown')

[nltk_data] Downloading package brown to

[nltk_data] C:\Users\yuquanle\AppData\Roaming\nltk_data...

[nltk_data] Package brown is already up-to-date!

True

from nltk.corpus import brown

brown.words()

['The', 'Fulton', 'County', 'Grand', 'Jury', 'said', ...]

5.度量

# percision:正确率

# recall:召回率

# f_measure

from nltk.metrics import precision, recall, f_measure

reference = 'DET NN VB DET JJ NN NN IN DET NN'.split()

test = 'DET VB VB DET NN NN NN IN DET NN'.split()

reference_set = set(reference)

test_set = set(test)

print("precision:" str(precision(reference_set, test_set)))

print("recall:" str(recall(reference_set, test_set)))

print("f_measure:" str(f_measure(reference_set,

test_set)))

precision:1.0

recall:0.8

f_measure:0.8888888888888888

6.词干提取(Stemmers)

# Porter stemmer

from nltk.stem.porter import *

# 创建词干提取器

stemmer = PorterStemmer()

plurals = ['caresses', 'flies', 'dies', 'mules', 'denied']

singles = [stemmer.stem(plural) for plural in plurals]

print(' '.join(singles))

caress fli die mule deni

# Snowball stemmer

from nltk.stem.snowball import SnowballStemmer

print(" ".join(SnowballStemmer.languages))

arabic danish dutch english finnish french german hungarian italian norwegian porter portuguese romanian russian spanish swedish

# 指定语言

stemmer = SnowballStemmer("english")

print(stemmer.stem("running"))

run

7.SentiWordNet接口

# 下载sentiwordnet词典

import nltk

nltk.download('sentiwordnet')

[nltk_data] Downloading package sentiwordnet to

[nltk_data] C:\Users\yuquanle\AppData\Roaming\nltk_data...

[nltk_data] Unzipping corpora\sentiwordnet.zip.

True

# SentiSynsets: synsets(同义词集)的情感值

from nltk.corpus import sentiwordnet as swn

breakdown = swn.senti_synset('breakdown.n.03')

print(breakdown)

print(breakdown.pos_score())

print(breakdown.neg_score())

print(breakdown.obj_score())

<breakdown.n.03: PosScore=0.0 NegScore=0.25>

0.0

0.25

0.75

# Lookup(查看)

print(list(swn.senti_synsets('slow')))

[SentiSynset('decelerate.v.01'), SentiSynset('slow.v.02'), SentiSynset('slow.v.03'), SentiSynset('slow.a.01'), SentiSynset('slow.a.02'), SentiSynset('dense.s.04'), SentiSynset('slow.a.04'), SentiSynset('boring.s.01'), SentiSynset('dull.s.08'), SentiSynset('slowly.r.01'), SentiSynset('behind.r.03')]

happy = swn.senti_synsets('happy', 'a')

print(list(happy))

[SentiSynset('happy.a.01'), SentiSynset('felicitous.s.02'), SentiSynset('glad.s.02'), SentiSynset('happy.s.04')]

更多用法:http://www.nltk.org/howto/index.html

代码已上传:

https://github.com/yuquanle/StudyForNLP/blob/master/NLPtools/NLTKDemo.ipynb

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页