工业机器人虚拟仿真实例教程(教程阿克曼结构移动机器人的gazebo仿真)

第三章、让小车动起来

1配置controller

在tianracer_description功能包新建config文件夹,通过一个yaml文件smart_control_config.yaml来声明我们所需要的controller,以及对应的参数,PID增益和 控制器设置必须保存在yaml文件中,然后通过 launch文件加载到param服务器上:

tianracer: # controls the rear two tires based on individual motors # Publish all joint states ----------------------------------- joint_state_controller: type: joint_state_controller/JointStateController publish_rate: 50 rear_right_velocity_controller: type: velocity_controllers/JointVelocityController joint: right_rear_wheel_joint pid: {p: 100.0, i: 0.01, d: 10.0} rear_left_velocity_controller: type: velocity_controllers/JointVelocityController joint: left_rear_wheel_joint pid: {p: 100.0, i: 0.01, d: 10.0} front_right_steering_position_controller: type: effort_controllers/JointPositionController joint: right_steering_hinge_joint pid: {p: 4.0, i: 2.0, d: 1.0} front_left_steering_position_controller: type: effort_controllers/JointPositionController joint: left_steering_hinge_joint pid: {p: 4.0, i: 2.0, d: 1.0} gazebo_ros_control: pid_gains: right_rear_wheel_joint: p: 100.0 i: 0.5 d: 0.0 left_rear_wheel_joint: p: 100.0 i: 0.5 d: 0.0

2配置launch文件

创建一个 rosLaunch 文件以启动 ros_control controllers,使用launch文件control.launch,运行controller_manager中的spawner,加载并运行这些上边这些controller:

<?xml version="1.0" encoding="UTF-8"?> <launch> <!-- Load joint controller configurations from YAML file to parameter server --> <rosparam file="$(find tianracer_description)/config/smart_control_config.yaml" command="load"/> <!-- load controllers --> <node name="controller_spawner" pkg="controller_manager" type="spawner" respawn="false" output="screen" ns="/tianracer" args="joint_state_controller rear_right_velocity_controller rear_left_velocity_controller front_right_steering_position_controller front_left_steering_position_controller"/> <node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher" respawn="true" output="screen"> <remap from="/joint_states" to="/tianracer/joint_states" /> </node> <node name="cmdvel2gazebo" pkg="tianracer_description" type="cmdvel2gazebo.py" respawn="true" output="screen"/> </launch>

接着创建一个可以将小车模型在gazeboi中打开的launch文件tianracer.launch,并且能够加载上述control.launch文件

<?xml version="1.0" encoding="UTF-8"?> <launch> <!-- 设置launch文件的参数 --> <arg name="paused" default="false"/> <arg name="use_sim_time" default="true"/> <arg name="gui" default="true"/> <arg name="headless" default="false"/> <arg name="debug" default="false"/> <!--模型车的起点放置位置--> <arg name="x_pos" default="0"/> <arg name="y_pos" default="0"/> <arg name="z_pos" default="0"/> <arg name="R_pos" default="0"/> <arg name="P_pos" default="0"/> <arg name="Y_pos" default="0"/> <!--运行gazebo仿真环境--> <include file="$(find gazebo_ros)/launch/empty_world.launch"> <arg name="debug" value="$(arg debug)" /> <arg name="gui" value="$(arg gui)" /> <arg name="paused" value="$(arg paused)"/> <arg name="use_sim_time" value="$(arg use_sim_time)"/> <arg name="headless" value="$(arg headless)"/> <!-- <arg name="world_name" value="$(find racebot_description)/world/tianracer_race.world"/> --> <!-- .world文件的地址--> </include> <!-- 加载机器人模型描述参数 --> <param name="robot_description" command="$(find xacro)/xacro --inorder '$(find tianracer_description)/urdf/tianracer_description.xacro'"/> <!-- 在gazebo中加载机器人模型--> <node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model" respawn="false" output="screen" args="-urdf -model tianracer -param robot_description -x $(arg x_pos) -y $(arg y_pos) -z $(arg z_pos) -R $(arg R_pos) -P $(arg P_pos) -Y $(arg Y_pos)"/> <!-- ros_control racecar launch file --> <include file="$(find tianracer_description)/launch/control.launch"> </include> <!--Launch the simulation joystick control--> <!-- <rosparam command="load" file="$(find tianracer_gazebo)/config/keyboard_teleop.yaml" /> <node pkg="tianracer_gazebo" type="keyboard_teleop.py" name="keyboard_teleop" /> --> </launch>

3配置运动学模型

在功能包中新建scripts文件夹,并加入cmdvei2gazebo.py文件,该文件用的是

【从零开始自动驾驶】07 用 ROS topic 控制车轮_哔哩哔哩_bilibili中的开源代码,其中代码的解析这里不做展开复述,各位请自行到原地址观看,up主讲的很好。该文件定义了小车的运动学模型,并且订阅了一个Twist消息类型的话题tianracer/cmd_vel,我们可以通过编写一个接收该消息类型话题的节点来控制小车运动。代码如下:

#!/usr/bin/env python import rospy from std_msgs.msg import Float64 from geometry_msgs.msg import Twist import math class CmdVel2Gazebo: def __init__(self): rospy.init_node('cmdvel2gazebo', anonymous=True) rospy.Subscriber('/tianracer/cmd_vel', Twist, self.callback, queue_size=1) self.pub_steerL = rospy.Publisher('/tianracer/front_left_steering_position_controller/command', Float64, queue_size=1) self.pub_steerR = rospy.Publisher('/tianracer/front_right_steering_position_controller/command', Float64, queue_size=1) self.pub_rearL = rospy.Publisher('/tianracer/rear_left_velocity_controller/command', Float64, queue_size=1) self.pub_rearR = rospy.Publisher('/tianracer/rear_right_velocity_controller/command', Float64, queue_size=1) # initial velocity and tire angle are 0 self.x = 0 self.z = 0 # car Wheelbase (in m) self.L = 0.261 # car Tread self.T_front = 0.1632 self.T_rear = 0.1632 # how many seconds delay for the dead man's switch self.timeout=rospy.Duration.from_sec(0.2); self.lastMsg=rospy.Time.now() # maximum steer angle of the "inside" tire self.maxsteerInside=0.6; # turning radius for maximum steer angle just with the inside tire # tan(maxsteerInside) = wheelbase/radius --> solve for max radius at this angle rMax = self.L/math.tan(self.maxsteerInside); # radius of inside tire is rMax, so radius of the ideal middle tire (rIdeal) is rMax treadwidth/2 rIdeal = rMax (self.T_front/2.0) # maximum steering angle for ideal middle tire # tan(angle) = wheelbase/radius self.maxsteer=math.atan2(self.L,rIdeal) # loop rate = rospy.Rate(10) # run at 10Hz while not rospy.is_shutdown(): self.publish() rate.sleep() def callback(self,data): # w = v / r self.x = data.linear.x / 0.3 # constrain the ideal steering angle such that the ackermann steering is maxed out self.z = max(-self.maxsteer,min(self.maxsteer,data.angular.z)) self.lastMsg = rospy.Time.now() def publish(self): # now that these values are published, we # reset the velocity, so that if we don't hear new # ones for the next timestep that we time out; note # that the tire angle will not change # NOTE: we only set self.x to be 0 after 200ms of timeout delta_last_msg_time = rospy.Time.now() - self.lastMsg msgs_too_old = delta_last_msg_time > self.timeout if msgs_too_old: self.x = 0 msgRear = Float64() msgRear.data = self.x self.pub_rearL.publish(msgRear) self.pub_rearR.publish(msgRear) msgSteer = Float64() msgSteer.data = 0 self.pub_steerL.publish(msgSteer) self.pub_steerR.publish(msgSteer) return # The self.z is the delta angle in radians of the imaginary front wheel of ackerman model. if self.z != 0: T_rear = self.T_rear T_front = self.T_front L=self.L # self.v is the linear *velocity* r = L/math.fabs(math.tan(self.z)) rL_rear = r-(math.copysign(1,self.z)*(T_rear/2.0)) rR_rear = r (math.copysign(1,self.z)*(T_rear/2.0)) rL_front = r-(math.copysign(1,self.z)*(T_front/2.0)) rR_front = r (math.copysign(1,self.z)*(T_front/2.0)) msgRearR = Float64() # the right tire will go a little faster when we turn left (positive angle) # amount is proportional to the radius of the outside/ideal msgRearR.data = self.x*rR_rear/r; msgRearL = Float64() # the left tire will go a little slower when we turn left (positive angle) # amount is proportional to the radius of the inside/ideal msgRearL.data = self.x*rL_rear/r; self.pub_rearL.publish(msgRearL) self.pub_rearR.publish(msgRearR) msgSteerL = Float64() msgSteerR = Float64() # the left tire's angle is solved directly from geometry msgSteerL.data = math.atan2(L,rL_front)*math.copysign(1,self.z) self.pub_steerL.publish(msgSteerL) # the right tire's angle is solved directly from geometry msgSteerR.data = math.atan2(L,rR_front)*math.copysign(1,self.z) self.pub_steerR.publish(msgSteerR) else: # if we aren't turning msgRear = Float64() msgRear.data = self.x; self.pub_rearL.publish(msgRear) # msgRear.data = 0; self.pub_rearR.publish(msgRear) msgSteer = Float64() msgSteer.data = self.z self.pub_steerL.publish(msgSteer) self.pub_steerR.publish(msgSteer) if __name__ == '__main__': try: CmdVel2Gazebo() except rospy.ROSInterruptException: pass

将代码中的话题名以及参数进行修改,改为自己小车模型的尺寸参数。并将该python代码作为一个节点添加到control .launch文件中。

4让小车动起来

通过rostopic pub话题让小车动起来

到此为止已经可以通过pub话题让小车动起来了。

roslaunch tianracer_description tianracer.launch

再开一个终端,使用rostopic list来看一下话题列表

rostopic list

工业机器人虚拟仿真实例教程(教程阿克曼结构移动机器人的gazebo仿真)(1)

可以看到发布了单目摄像头,深度摄像头,激光雷达,以及让小车运动的tianracer/cmd_vel话题,将这个话题pub一下:

rostopic pub /tianracer/cmd_vel -r 10 geometry_msgs/Twist "linear: x: 1.0 y: 0.0 z: 0.0 angular: x: 0.0 y: 0.0 z: 1.0"

此时小车便会绕着Z轴转动起来。

使用键盘控制节点控制小车运动

在tianracer_description/scripts目录下新建teleop.py

#!/usr/bin/env python # -*- coding: utf-8 -*- import rospy from geometry_msgs.msg import Twist import sys, select, termios, tty msg = """ Control mbot! --------------------------- Moving around: u i o j k l m , . q/z : increase/decrease max speeds by 10% w/x : increase/decrease only linear speed by 10% e/c : increase/decrease only angular speed by 10% space key, k : force stop anything else : stop smoothly CTRL-C to quit """ moveBindings = { 'i':(1,0), 'o':(1,-1), 'j':(0,1), 'l':(0,-1), 'u':(1,1), ',':(-1,0), '.':(-1,1), 'm':(-1,-1), } speedBindings={ 'q':(1.1,1.1), 'z':(.9,.9), 'w':(1.1,1), 'x':(.9,1), 'e':(1,1.1), 'c':(1,.9), } def getKey(): tty.setraw(sys.stdin.fileno()) rlist, _, _ = select.select([sys.stdin], [], [], 0.1) if rlist: key = sys.stdin.read(1) else: key = '' termios.tcsetattr(sys.stdin, termios.TCSADRAIN, settings) return key speed = 10 turn = 1 def vels(speed,turn): return "currently:\tspeed %s\tturn %s " % (speed,turn) if __name__=="__main__": settings = termios.tcgetattr(sys.stdin) rospy.init_node('carsmart_teleop') pub = rospy.Publisher('/tianracer/cmd_vel', Twist, queue_size=5) x = 0 th = 0 status = 0 count = 0 acc = 0.1 target_speed = 0 target_turn = 0 control_speed = 0 control_turn = 0 try: print msg print vels(speed,turn) while(1): key = getKey() # 运动控制方向键(1:正方向,-1负方向) if key in moveBindings.keys(): x = moveBindings[key][0] th = moveBindings[key][1] count = 0 # 速度修改键 elif key in speedBindings.keys(): speed = speed * speedBindings[key][0] # 线速度增加0.1倍 turn = turn * speedBindings[key][1] # 角速度增加0.1倍 count = 0 print vels(speed,turn) if (status == 14): print msg status = (status 1) % 15 # 停止键 elif key == ' ' or key == 'k' : x = 0 th = 0 control_speed = 0 control_turn = 0 else: count = count 1 if count > 4: x = 0 th = 0 if (key == '\x03'): break # 目标速度=速度值*方向值 target_speed = speed * x target_turn = turn * th # 速度限位,防止速度增减过快 if target_speed > control_speed: control_speed = min( target_speed, control_speed 0.02 ) elif target_speed < control_speed: control_speed = max( target_speed, control_speed - 0.02 ) else: control_speed = target_speed if target_turn > control_turn: control_turn = min( target_turn, control_turn 0.1 ) elif target_turn < control_turn: control_turn = max( target_turn, control_turn - 0.1 ) else: control_turn = target_turn # 创建并发布twist消息 twist = Twist() twist.linear.x = control_speed; twist.linear.y = 0; twist.linear.z = 0 twist.angular.x = 0; twist.angular.y = 0; twist.angular.z = control_turn pub.publish(twist) except: print e finally: twist = Twist() twist.linear.x = 0; twist.linear.y = 0; twist.linear.z = 0 twist.angular.x = 0; twist.angular.y = 0; twist.angular.z = 0 pub.publish(twist) termios.tcsetattr(sys.stdin, termios.TCSADRAIN, settings)

该节点发布了一个Twist消息类型的话题tianracer/cmd_vel,可以通过键盘来控制小车运动。

roslaunch tianracer_description tianracer.launch rosrun tianracer_description teleop.py

工业机器人虚拟仿真实例教程(教程阿克曼结构移动机器人的gazebo仿真)(2)

此时按u,i,o等按键即可控制小车运动了,通过rqt_graph看一下各个节点之间的关系:

rqt_graph

工业机器人虚拟仿真实例教程(教程阿克曼结构移动机器人的gazebo仿真)(3)

5小结

至此,已经成功让小车动起来了,而且也添加了激光雷达传感器,这也就意味着接下去就能做建图导航了,然而由于从solidworks导出的模型惯性参数等方面的一些问题,导致小车运动起来多多少少有一些问题,所以我手撸了小车的1:1简易模型的代码,并且准备用ackermann消息控制小车运动,并使用该模型完成接下去的建图导航等内容。

工业机器人虚拟仿真实例教程(教程阿克曼结构移动机器人的gazebo仿真)(4)

参考资料:

1.古月老师的《ROS机器人开发实践》

2.[从零驾驶自动驾驶] https://www.bilibili.com/video/BV1ZJ41187tS?spm_id_from=333.999.0.0

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页