求线段最短的方法(六种方法求线段长度)
求线段的数量关系与位置关系是初中阶段常考的内容之一,那如何在纷繁复杂的题目中找到求线段长度的突破口呢。下面小编为大家整理了初中阶段常用求线段长度的方法。前四种是纯粹初中阶段的知识,后两种方法应用到高一的公式。由于中考中使用高中阶段知识解题并不算错误(应用错误则肯定不得分),因此特别普及一下。
【典型例题】
如图1,在Rt△ABC中,∠C=90°,AC=4,BC=3,CD为斜边AB上的高,求CD的长.
图1
【解析】
【方法一】等面积法
解:∵∠C=90°,AC=4,BC=3,∴AB=5.
又∵CD为斜边AB上的高,∴S△ABC=AC·BC=AB·CD,
∴4×3=5CD,CD=2.4.
【方法二】勾股定理
解:∵∠C=90°,AC=4,BC=3,∴AB=5.
设BD=x,则AD=5-x.
【方法六】点到直线的距离公式
如图2,以点C为坐标原点,CA,CB所在直线分别为x轴,y轴,建立平面直角坐标系.
则C(0,0),A(0,4),B(3,0).
设直线AB的解析式为y=kx+4,代入B(3,0),得0=3k+4,k=-.
图2
怎么样?有收获吗?希望这些方法可以帮你找到解题的突破口,快速解决难题!
,免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com