理想气体状态方程推导公式高中(结合理想气体状态方程张朝阳的物理课推导麦克斯韦速度分布律)
2月18日12时,《张朝阳的物理课》第二十九期准时开播搜狐创始人、董事局主席兼CEO张朝阳坐镇搜狐视频直播间,探究玻尔兹曼分布,并以重力场和速度场为例进行讲解通过建立空气密度、重力、温度、压差之间的关系,推导得到空气粒子数密度随重力势能的分布;利用速度各分量的独立性、各向同性、理想气体状态方程等,推导得到麦克斯韦速度分布律,体现粒子数密度随动能的分布两者均符合玻尔兹曼分布这些也为解释大气中氢气含量之低提供了一个物理的视角,下面我们就来说一说关于理想气体状态方程推导公式高中?我们一起去了解并探讨一下这个问题吧!
理想气体状态方程推导公式高中
2月18日12时,《张朝阳的物理课》第二十九期准时开播。搜狐创始人、董事局主席兼CEO张朝阳坐镇搜狐视频直播间,探究玻尔兹曼分布,并以重力场和速度场为例进行讲解。通过建立空气密度、重力、温度、压差之间的关系,推导得到空气粒子数密度随重力势能的分布;利用速度各分量的独立性、各向同性、理想气体状态方程等,推导得到麦克斯韦速度分布律,体现粒子数密度随动能的分布。两者均符合玻尔兹曼分布。这些也为解释大气中氢气含量之低提供了一个物理的视角。
“我们花了很长时间,研究量子力学和它的典型应用。先是氢原子能级,后来是双原子分子。”张朝阳开场直奔主题,“今天要研究玻尔兹曼在重力场和速度场的分布。“
玻尔兹曼分布:高处空气更稀薄? 微分方程来建模
上节课,张朝阳利用玻尔兹曼分布,解释温度很低时自由度会被冻结,导致能量均分定理失效,最终得出比热容随温度的阶梯图。同时,计算粒子平均振动能以及普朗克黑体辐射时,也都用到了玻尔兹曼分布,足见其重要性与普遍性。今天,他想通过两个关于理想气体分布的具体计算实例,来直观呈现玻尔兹曼分布。
“先来看看简单的例子。”张朝阳尝试计算粒子质量为m,温度为T的理想气体,在重力加速度为g的重力场下,其数密度n随高度h的变化。
他介绍说,在高度为h的地方,取一个底面积为A,高度为dh的小层,则这层的体积为Adh,一共有nAdh个粒子,每个粒子受向下的重力mg,则这层气体受到的向下的重力为mgnAdh。另外这层气体还受到上下两部分气体的压力,设上部分气体的压强为p dp,下部分气体的压强为p,那么气体受到向上的推力为Ap-A(p dp)=-Adp,它必须与向下的重力mgnAdh相等才可以让这层气体受力平衡:
另外,将理想气体状态方程p=nkT代入上式,然后消掉两边的A,并将右边的n移到左边后两边进行积分,最终得到气体数密度关于高度的分布:
mgh正是气体在重力场下的势能。可见大气中的粒子数密度符合玻尔兹曼分布。
麦克斯韦速度分布:各向同性定形式 总数和压强做归一
张朝阳还举了另外一个例子。同样也是理想气体,但此气体没有重力场等外场势能,只研究其中粒子在温度为T时的速度分布,该分布正是麦克斯韦速度分布。他边列公式边介绍,设一个微小的速度区内的粒子数密度为:
由于理想气体中的粒子是各向同性的,所以粒子数密度的分布f与粒子速度的方向无关,只与速度的大小有关。他在小白板上写下:
他解释,“我们还知道,理想气体中粒子之间无势能,而关于它们的碰撞也可以分解为相互独立的三个分量,所以粒子在三个方向上的速度分布是相互独立的,于是又可以将f写成如下形式。”
将上式等号两边取对数,可以将右边乘法变成加法,然后求其关于速度x分量的偏导,可得:
同理,对速度y与z分量求偏导也得到上式等号左边的量,结合起来就得到:
由于知道g函数只与对应的速度分量有关,而速度分量之间又是彼此独立的,那么上式只能等于一个与速度分量都无关的常数:
容易解得g函数:
将g函数带回f的表达式,最终可以得到粒子数密度关于总速度的分布:
(利用粒子速度分布的各向同性与三个方向分量的独立性推导麦克斯韦速度分布律)
“接下来,我们还需要计算积分常数A以及参数α。”他继续推导,将所有速度区间的粒子数密度加起来,可以得到理想气体的总粒子数密度n:
由此,可以计算得到A的具体表达式:
至于参数α,则需要使用理想气体状态方程p=nkT来处理,张朝阳利用粒子对zy平面的容器壁的碰撞来计算压强p。将其它速度其它分量积分可以得到速度x分量的分布:
每个粒子碰撞容器壁后,x方向上的动量大小相等方向反向,改变量为原动量x分量的2倍大小。计算所有向x正方向碰撞容器壁产生的压强:
为了继续化简,将总粒子数密度n表达为x方向上的积分:
将此表达式代入p=nkT中,化简便可得到α的表达式:
将A与α代回f,最终得到麦克斯韦速度分布的表达式:
若进一步化为关于速度大小的表达式,则如下图所示:
(张朝阳推导得到麦克斯韦速度分布)
氢气在大气中为何少?利用麦克斯韦速度分布律推导解释
观察麦克斯韦速度分布公式,注意到e指数上除kT之外就是粒子的动能,这说明此分布也满足玻尔兹曼分布,张朝阳从物理学的角度,利用麦克斯韦速度分布解释了氢气为何在大气中那么少。
根据前面计算的粒子数密度关于高度的分布,由于氢气分子质量相比空气中其它分子的质量要小得多,所以其粒子数密度随高度衰减得没那么快,从而氢气可以爬得更高,再根据麦克斯韦速度分布律公式,氢气分子质量小还会导致它在速度较大的情况下仍有可观的分布,部分粒子的速度,可以超过第一宇宙速度甚至第二宇宙速度,从而逐渐逃逸,离开地球。这样氢气在大气中的含量就非常少了。
当然,这只是看待该问题的一个角度。实际上,从化学上讲,氢较为活泼,容易形成水等许多化合物,从而以其它形式相对固定地存在于地球上,也减少了它以单质形式存在于大气中的量。实际上,用原子质量较小但化学上更惰性的氦气作为例子,可以更好地体现这一物理规律的影响。
可以看到,在本节课中的两个例子都符合玻尔兹曼分布,其中一个e指数上的能量是粒子的势能,而另一个则是粒子的动能,可见玻尔兹曼具有普适性,下节课将具体讲解如何导出玻尔兹曼分布。直播结尾,张朝阳总结课程内容,“这是能量差和kT的战争。”
打造知识直播平台:搜狐视频发力价值直播 吸引诸多科普播主入驻
截至目前,《张朝阳的物理课》已直播近三十期。张朝阳先是从经典物理学开始,科普了牛顿运动定律与能量动量守恒;讲解机械振动与波动方程并计算空气中的声速,顺便讨论与此相关的理想气体状态方程和能量均分定理。尔后从经典物理的“两朵乌云”说起,向近现代物理过渡,包括由黑体辐射研究引出的维恩、瑞利-金斯、斯特潘、普朗克等系列公式;由电磁学和时空性质引发的相对论议题,如洛伦兹变换、尺缩钟慢、质能关系、粒子衰变等。
此后逐步进入量子力学领域,从基础的薛定谔方程、算符对易关系、不确定性原理等理论内容,到无限深势阱、氢原子波函数、原子能级与简并等基础模型,再到谐振子量子化、分子振转光谱、自由度的冻结、气体定容比热的温度阶梯等更加具体实用的案例。内容丰富、覆盖广泛,理论公式由浅入深、繁简交融,研究对象由小到大、由少到多,从单电子原子到多电子原子、多原子分子,再到由众多粒子组成的宏观物质,实际上已经逐渐进入到统计物理学领域。接下来的玻尔兹曼分布、麦克斯韦速度分布律等,也就顺势引入,顺理成章。
从近三十期的物理课可以看出,《张朝阳的物理课》的直播风格独树一帜——通过观察日常生活现象、用网友比价熟悉的话题来提升兴趣,再以公式推导的方式解释其背后的物理原理,“透过现象看本质”,进而反过来解决生活中的类似问题。
张朝阳认为研究自然界是特别有意思的事情,他希望物理课的受众能保有好奇心,“在好奇心驱使下,了解自然界的奥秘,了解我们在这个世界生存的道理”。该课程于每周周五、周日12时在搜狐视频直播。同时,网友可以在搜狐视频“关注流”中搜索“张朝阳”,观看往期完整视频回放。
除《张朝阳的物理课》外,搜狐视频也邀请各专业领域头部播主入驻,直播科普知识,传递价值。北京交通大学理学院教师陈征博士玩起了“奇趣的科学实验”,走进“光的波粒二象性”;康奈尔大学物理化学博士包坤,化身“包大人玩科学”,教普通人看懂2021年诺贝尔奖;还有天体物理博士刘博洋科普“日全食是怎么产生的”,理论物理博士后周思益也开通“弦论世界”直播课等。未来还将有更多知识播主入驻,一起互动玩转科学。
文/金仁甫
编辑/范辉
免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com