分式和分式方程的区别(分式与分式方程之分式概念及基本性质)

【知识网络】

分式和分式方程的区别(分式与分式方程之分式概念及基本性质)(1)

【思想方法】

1.转化思想

转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等.

2.建模思想

本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义.

3.类比法

本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程.


分式和分式方程的区别(分式与分式方程之分式概念及基本性质)(2)

分式和分式方程的区别(分式与分式方程之分式概念及基本性质)(3)

分式和分式方程的区别(分式与分式方程之分式概念及基本性质)(4)


最科学、最实用、最接地气的中高考数学知识分享,专为中高考考生提供丰富的备考技巧、复习资料、精品课程等,致力帮助初三和高三学生迎战中高考。欢迎关注zgkcc100

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页