如何记忆三角函数对应的角度(为什么不用角度制定义三角函数)
文/大罕(王方汉)【提问】以角度为自变量可以建立三角函数吗?有人说不行,因为以角度为元素的集合不是数集.又有人说,角度带有单位,应该是常量,不是实数.到底如何解释呢?【回复】角度,通常指一个角的大小用度分秒制表示出来的数字.1°表示一个角的大小是周角的360分之一.1°当然不是实数.但是,把1°中的数值1单独抽出来说,这个1是实数.这样说当然是对的.任意给定一个角α(正角、负角或零角),总可以用度分秒制的度数表示它的大小,这个α角的大小就是n度,再把其中的n单独抽出来看,n是一个实数(这个过程实际上与用弧度制表示角时把弧度二字省略是一样的).反之,任意给定一个实数n,我们总可以找到一个角α使其度数为n.于是角n的集合与实数集R建立了一一对应的关系.因此,我们能以角度n为自变量建立正弦函数等三角函数.必须指出的是,以角度为自变量的函数,它给我们带来的麻烦不仅是不可胜数而且是无处不在的,而弧度制处处显示它的优越性.首先是换算.度分秒制里的数,并用着十进制和六十进制例如角α=136°47′21",其中136、47、21都是十进制,而度、分、秒之间是六十进制.于是,为了找出与角α对应的实数n,人工计算肯定是比较麻烦的.其次是运算.例如弧度制下,π/3 1=(π 3)/3,畅通无阻.而60° 1怎么加?难道是60 1=61(度)吗?当然不是.更重要的是运用.比如,弧长公式用弧度制是l= αr ,而角度制则是l=nπr/180,麻烦不少.又如求导公式,在弧度制下的求导公式,如用角度制,则统统要改写,比如自然对数的导数,在弧度制下非常漂亮,用角度制则是自找麻烦再如求定积分,∫(0°,45°)sinxdx=(-cosx)|(0°,45°)=-(cos45°-cos0°) =(√2/2)-1,别别扭扭.总之,用角度制非不行也,乃不便也,故不必也.有人说“其实角度制的数字是带量纲的,弧度制的数字是不带量纲的,弧度制下的三角函数问题已经抽象为纯粹的数学问题,有更为广泛的应用.” 角度通常认为它是无量纲的量(与长度不同).如果坚持说它有量纲,那么它量纲为1.量纲说到底是物理上的概念,其理论还有点复杂,故不予深究.何况回答上述问题,完全不必扯出量纲来说.有人说“度分秒制表示的角是有理数,不能与实数集一一对应.而弧度制能,所以用弧度制.”从理论上讲,度数为无理数的角是存在的,如同弧度制里有无理数的角一样,其大小可用有理数去逼近.可见,这个不能成为三角函数用弧度制的角作为自变量的理由.有人说“这个问题教材已经讲得很清楚了,建议大家认真阅读下教材,以角为自变量可以通过弧度数与实数一一对应,自然符合函数的定义呀.”教材里只是讲清楚了为什么可以用弧底制定义三角函数,没有讲为什么不用角度制去定义三角函数.进一步说,教材不是百科全书,不可能把一切可疑的问题都讲清楚.关于用角度制定义三角函数的问题,第一不必要讲,第二也不好讲.有人问“函数作图,对x、y轴的长度单位要不要求一致?”作函数图像时,对x、y轴的长度单位是要求一致的.否则会因单位不一致使得图像“失真”.但是,对于实际应用题的图像,x、y轴的长度单位可以不一致,根据情况酌定.有人问“角度制下能不能作出三角函数的图像?”在角度制下,三角函数的图像是可以画出的.不过,要事先要一些约定.比如说,表示1度的实数1,在横轴上画一个单位长,90度的正弦值等于1,这个1在纵轴上同样画一个单位长,那么,这样画出来的“正弦曲线”非常扁平,看起来缺少美感,也不方便应用.又有人说:“上述这个问题,似在嘴边,而几乎没有想到.明白了这个道理,继续学习三角,积极性提高了.” 笔者完全赞同这个说法.,下面我们就来说一说关于如何记忆三角函数对应的角度?我们一起去了解并探讨一下这个问题吧!
如何记忆三角函数对应的角度
文/大罕(王方汉)【提问】以角度为自变量可以建立三角函数吗?有人说不行,因为以角度为元素的集合不是数集.又有人说,角度带有单位,应该是常量,不是实数.到底如何解释呢?【回复】角度,通常指一个角的大小用度分秒制表示出来的数字.1°表示一个角的大小是周角的360分之一.1°当然不是实数.但是,把1°中的数值1单独抽出来说,这个1是实数.这样说当然是对的.任意给定一个角α(正角、负角或零角),总可以用度分秒制的度数表示它的大小,这个α角的大小就是n度,再把其中的n单独抽出来看,n是一个实数(这个过程实际上与用弧度制表示角时把弧度二字省略是一样的).反之,任意给定一个实数n,我们总可以找到一个角α使其度数为n.于是角n的集合与实数集R建立了一一对应的关系.因此,我们能以角度n为自变量建立正弦函数等三角函数.必须指出的是,以角度为自变量的函数,它给我们带来的麻烦不仅是不可胜数而且是无处不在的,而弧度制处处显示它的优越性.首先是换算.度分秒制里的数,并用着十进制和六十进制。例如角α=136°47′21",其中136、47、21都是十进制,而度、分、秒之间是六十进制.于是,为了找出与角α对应的实数n,人工计算肯定是比较麻烦的.其次是运算.例如弧度制下,π/3 1=(π 3)/3,畅通无阻.而60° 1怎么加?难道是60 1=61(度)吗?当然不是.更重要的是运用.比如,弧长公式用弧度制是l= αr ,而角度制则是l=nπr/180,麻烦不少.又如求导公式,在弧度制下的求导公式,如用角度制,则统统要改写,比如自然对数的导数,在弧度制下非常漂亮,用角度制则是自找麻烦!再如求定积分,∫(0°,45°)sinxdx=(-cosx)|(0°,45°)=-(cos45°-cos0°) =(√2/2)-1,别别扭扭.总之,用角度制非不行也,乃不便也,故不必也.有人说“其实角度制的数字是带量纲的,弧度制的数字是不带量纲的,弧度制下的三角函数问题已经抽象为纯粹的数学问题,有更为广泛的应用.” 角度通常认为它是无量纲的量(与长度不同).如果坚持说它有量纲,那么它量纲为1.量纲说到底是物理上的概念,其理论还有点复杂,故不予深究.何况回答上述问题,完全不必扯出量纲来说.有人说“度分秒制表示的角是有理数,不能与实数集一一对应.而弧度制能,所以用弧度制.”从理论上讲,度数为无理数的角是存在的,如同弧度制里有无理数的角一样,其大小可用有理数去逼近.可见,这个不能成为三角函数用弧度制的角作为自变量的理由.有人说“这个问题教材已经讲得很清楚了,建议大家认真阅读下教材,以角为自变量可以通过弧度数与实数一一对应,自然符合函数的定义呀.”教材里只是讲清楚了为什么可以用弧底制定义三角函数,没有讲为什么不用角度制去定义三角函数.进一步说,教材不是百科全书,不可能把一切可疑的问题都讲清楚.关于用角度制定义三角函数的问题,第一不必要讲,第二也不好讲.有人问“函数作图,对x、y轴的长度单位要不要求一致?”作函数图像时,对x、y轴的长度单位是要求一致的.否则会因单位不一致使得图像“失真”.但是,对于实际应用题的图像,x、y轴的长度单位可以不一致,根据情况酌定.有人问“角度制下能不能作出三角函数的图像?”在角度制下,三角函数的图像是可以画出的.不过,要事先要一些约定.比如说,表示1度的实数1,在横轴上画一个单位长,90度的正弦值等于1,这个1在纵轴上同样画一个单位长,那么,这样画出来的“正弦曲线”非常扁平,看起来缺少美感,也不方便应用.又有人说:“上述这个问题,似在嘴边,而几乎没有想到.明白了这个道理,继续学习三角,积极性提高了.” 笔者完全赞同这个说法.
,免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com