钟表上分针的转动是旋转现象(时钟的三个针尖可以构成正三角形吗)
知乎上看到这样一个问题:
...... 是否存在一个时钟,使得时分秒三针长度都是整数长度,而且可以在某一时刻,三根表针的针尖正好构成一个正三角形的三个顶点?
问题的背景是:已知时钟的三根针无法形成互相之间成120°角的状态,所以当三根针等长时,时钟针尖无法形成正三角形。而三根针长度不同时,是否还有可能形成正三角形呢?
原题比较开放,特别是未指定三根针的长度比例。恰好我发现我身边多数的钟,分针与秒针的长度是一样的:
另外,题主要求三根针的长度都是整数,所以不妨假设时针、分针和秒针的长度比是1:2:3。那么形成正三角形时,时针必然在中间。我们希望算出出现正三角形时,时针与分针和秒针的角度,所以作图如下:
其中DA是时针,DB和DC是分针,△ABC是正三角形,长度k=1,长度i=j=2。要求出α角的大小,使用余弦定理,可以列出以下方程组:
△DAB中使用余弦定理:
△DBC中使用余弦定理:
因为h=f,所以问题变为解方程:
通过倍角公式可以解出的值,或者你像我一样懒的话,直接丢给wolfram alpha求解:
将弧度0.270919化为度数,约为15.5°
这样一来就简单多了,假设时间是x时y分z秒,时针相对于12点的夹角是:
,
分针的夹角是: ,
秒针的夹角是: ,
那么问题就变为解这样一组方程组:
那么同样丢给wolfram alpha求解比较快:),比如 x=2时:
依次将x=0到11间的整数代入,可以得到以下10组解:
如果翻转分针和秒针位置,同样可以得出另外10组解,留给读者自行计算。
另外,尝试了一下,当三根针的长度比例是1:2:3的情况,发现此时三针的夹角恰为60°,可以得到更为漂亮的图形。其中一个形状是:
欢迎把你的其他计算结果写在评论区中!
,
免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com