有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)

点上方超级数学建模可加关注

传播数学干货,学会理性的方式去思考问题

为什么有理数一定能表示为一个有限小数或无限循环小数,以及怎么把一个无限循环小数化为它的既约分数形式?

不知道如何证明如果有理数化成小数形式如果是无限小数,那么它一定是循环的。碰到 0.168831 168831 168831... 怎么知道它作为分数是什么?

一、问题重述

要证明:有理数=有限小数 无限循环小数,咱们首先来做几个说明:

有理数又称为比例数,因此有理数和分子分母是整数的分数是等价的。每个有理数都有一个既约分数和它对应,既约分数是指分子和分母不仅是整数,而且二者的最大公约数是1。

有限小数是有理数一定正确。

我们可以把需要证明的有理数的范围缩小到(0, 1)之间,如果在这个范围内结论成立,那么推广到全部有理数上结论也成立。

无限循环小数是形如

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(1)

的小数,其中前面的m个小数位

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(2)

没有循环,循环节是

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(3)

为了证明题目,需要证明下面两个结论

  1. 无限循环小数一定是有理数。

  2. 有理数一定是有限小数或者无限循环小数。

二、证明无限循环小数一定是有理数

首先我们任取一个无限循环小数

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(4)

,从它开始循环的地方切一刀,把前面和后面的部分分开:

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(5)

因为分数/有理数的四则运算还是分数/有理数,所以为证明q是有理数,只需要证明

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(6)

可以写成分数的形式。

我们把循环节提出来,把 再分解一次:

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(7)

后面的无限循环小数的循环节是连着k-1个是0,然后跟一个1,恰好满足:

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(8)

原因是:

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(9)

因此我们得到:

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(10)

这样就证明了 是有理数。

三、证明有理数一定是有限小数或者无限循环小数

我们随便拿来一个既约真分数

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(11)

。也就是分子分母互质,并且值在(0,1)之间的分数。我们要证明它一定是有限小数或者无限循环小数。

思路:

因为由上面的分析我们知道

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(12)

是循环节为c的循环小数,我们首先试探任意有理数是否一定存在循环小数的相等形式:

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(13)

(这个等式不一定成立,但是可以启发我们)。假设这个等式成立,则:

交叉相乘,得到

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(14)

。因为a、b互质,为了能让等式成立,就必须使b是

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(15)

的约数。因此,只要是某个连续若干个9组成的整数的约数,那么上面那个式子就一定成立。因此,我们需要尝试找一个整数n,满足b能整除 。这启发我们构造一个特殊的数列。

构造:

对任意,我们定义一个数

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(16)

为连续m个9组成的整数除以b的余数:

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(17)

,如果有一个

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(18)

,那么咱们的目的就达到了。

同余除法有一点点复杂,经过一定计算我们可以得到一个递推公式:

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(19)

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(20)

继续推导可以得到一个一般递推公式:

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(21)

因为一个数除以b的余数只能是0到b-1之间的b个整数,一共只b种可能,因此不断把k增大,一定有某两个f的值相同了。咱们不妨就假设

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(22)

,这说明:

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(23)

因此是

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(24)

的约数。

虽然这并不能说能整除其中一个(除非是素数),但是可以说能分解成两部分,各整除其中一部分:我们令

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(25)

,满足

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(26)

整除

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(27)

,整除

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(28)

。前者可得整数 满足

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(29)

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(30)

;对于后者,我们首先由

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(31)

的定义得知

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(32)

,其中

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(33)

是某个整数,从而两边加1得

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(34)

,进而由 既整除 又整除 得到 能够整除

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(35)

,得知存在另一个整数

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(36)

满足

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(37)

因此我们得到:

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(38)

咱们令

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(39)

则可以得到:

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(40)

和上一节的结论一比较,就可以知道这一定是一个有限小数或循环小数之。由于分数a、b的选择是任意的,证明完毕。

via:王小龙(知乎)

超级数学建模,每晚零点,风雨无阻

专注数学、数据、数模干货

商务合作请zxn19921018

有理数为什么是循环小数(为什么有理数一定能表示为一个有限小数或无限循环小数)(41)

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页