高中数学导数常见公式(高中数学常用公式及结论)

一 、f(x)在 x0 处的导数(或变化率):

高中数学导数常见公式(高中数学常用公式及结论)(1)

图(1)

① 瞬时速度:

高中数学导数常见公式(高中数学常用公式及结论)(2)

瞬时速度图

② 瞬时加速度

高中数学导数常见公式(高中数学常用公式及结论)(3)

瞬时加速度图

二、 函数 y = f(x)在点 x0 处的导数的几何意义:

函数 y = f(x)在点 x0 处的导数是曲线 y = f(x)在点 P(x0 , f(x0)) 处的切线的斜率 f '(x0);

相应的切线方程是: y - y0 = f '(x0)(x - x0)。

三、几种常见函数的导数:

① C' = 0 (C 为常数);

② 幂函数

高中数学导数常见公式(高中数学常用公式及结论)(4)

幂函数求导公式图

③ 三角函数

高中数学导数常见公式(高中数学常用公式及结论)(5)

正弦和余弦函数求导公式图

④ 指数函数

高中数学导数常见公式(高中数学常用公式及结论)(6)

指数函数求导公式图

⑤ 对数函数

高中数学导数常见公式(高中数学常用公式及结论)(7)

对数函数求导公式图

四、导数的运算法则:

高中数学导数常见公式(高中数学常用公式及结论)(8)

导数的运算法则图

五、复合函数的导数:

高中数学导数常见公式(高中数学常用公式及结论)(9)

复合函数求导公式图

六、导数在函数中的应用:

① 函数 y = f(x)在区间 (a , b)的单调性与导数

高中数学导数常见公式(高中数学常用公式及结论)(10)

单调性图

② 判别 f (x0)是极大(小)值的方法:

当函数 f(x)在点 x0 处连续时,

(1)如果在 x0 附近的左侧 f '(x0)> 0 ,右侧 f '(x0)< 0,则 f (x0)是极大值;

(2)如果在 x0 附近的左侧 f '(x0)< 0,右侧 f '(x0)> 0,则 f (x0) 是极小值 。

七、定积分的性质:

高中数学导数常见公式(高中数学常用公式及结论)(11)

定积分的性质图(1)

高中数学导数常见公式(高中数学常用公式及结论)(12)

定积分的性质图(2)

高中数学导数常见公式(高中数学常用公式及结论)(13)

定积分的性质图(3)

④ 如果在闭区间 [a,b] 上,f(x) ≥0 , 则

高中数学导数常见公式(高中数学常用公式及结论)(14)

定积分的性质图(4)

八、微积分基本定理:

如果函数 f(x) 是闭区间 [a,b] 上的连续函数,并且有 F′(x) = f(x),那么有

高中数学导数常见公式(高中数学常用公式及结论)(15)

微积分基本定理图

九、定积分的几何意义:

由连续曲线 y = f(x)( f(x)≥ 0 )和 x = a , x = b 及 y = 0 围成的平面图形 AabB 称为曲边梯形,如下图所示:

高中数学导数常见公式(高中数学常用公式及结论)(16)

定积分的几何意义图(1)

① 若 f(x)≤ 0 (如下图所示)则曲边梯形的面积

高中数学导数常见公式(高中数学常用公式及结论)(17)

定积分的几何意义图(2)

② 把由直线 y = c,y = d (c < d )及两条连续曲线 x = g1(y),x = g2(y) ( g1(y) ≤ g2(y)) 所围成的平面图形称为Y-型图形。

高中数学导数常见公式(高中数学常用公式及结论)(18)

定积分几何意义图(3)

图中阴影部分的面积:

高中数学导数常见公式(高中数学常用公式及结论)(19)

求图中阴影部分面积公式图(1)

③ 由连续曲线 y = f1(x), y = f2(x)和 直线 x = a , x = b 围成的图形的面积 。

高中数学导数常见公式(高中数学常用公式及结论)(20)

定积分几何意义图(3)

图中阴影部分的面积:

高中数学导数常见公式(高中数学常用公式及结论)(21)

求图中阴影部分面积公式图(2)

十、定积分在物理上的应用

变速 v = v(t)(t ≥ 0) 时间在 [ a , b ] 段 ,路程

高中数学导数常见公式(高中数学常用公式及结论)(22)

定积分在物理上的应用图(1)

变力 F = F(x), 物体沿力的方向从 a 移动到 b ,做功

高中数学导数常见公式(高中数学常用公式及结论)(23)

定积分在物理上的应用图(2)

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页