李老师讲数学经典面积题(动点产生的面积关系问题)

1.求不规则图形或难以同时求出底和高的三角形的面积,一般的思路是割补法:

①有一边“水平”或“竖直”的多边形,作垂线分割成直角三角形或直角梯形,如图1;

②“斜”的三角形一般不易找到它的底和高,通常过顶点作铅垂线和水平线“补”成矩形,再减去各角上的直角三角形面积,如图2.

李老师讲数学经典面积题(动点产生的面积关系问题)(1)

图1

李老师讲数学经典面积题(动点产生的面积关系问题)(2)

图2

2.对于“斜”三角形可用“铅垂法”求面积:如图3,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高”(h).我们可得出一种计算三角形面积的新方法:SABC=1/2ah,即三角形面积等于水平宽与铅垂高乘积的一半.

李老师讲数学经典面积题(动点产生的面积关系问题)(3)

图3

3.底或高不明显,但已知边的关系,可用相似比间接求得.①如图4,同底三角形的面积比等于高的比同高三角形的面积比等于底的比;②如图5,同底等高三角形的面积相等.

李老师讲数学经典面积题(动点产生的面积关系问题)(4)

李老师讲数学经典面积题(动点产生的面积关系问题)(5)

图4

李老师讲数学经典面积题(动点产生的面积关系问题)(6)

图5

【典型例题】

如图①,已知抛物线yax2bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C

(1)求抛物线的解析式;

(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

(3)如图②,若点E为第二象限抛物线上一动点,连接BECE,求四边形BOCE面积的最大值,并求此时E点的坐标.

李老师讲数学经典面积题(动点产生的面积关系问题)(7)

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页