发明飞机的原理(伟大的发明飞机)

换个角度看世界,“空中座驾”带你翱翔全球!

发明飞机的原理(伟大的发明飞机)(1)

飞机是20世纪初最重大的发明之一,公认由美国人莱特兄弟发明。他们在1903年12月17日进行的飞行作为“第一次重于空气的航空器进行的受控的持续动力飞行”被国际航空联合会(FAI)所认可。

自从飞机发明以后,飞机日益成为现代文明不可缺少的交通工具。它深刻的改变和影响了人们的生活,开启了人类征服蓝天历史。

严格定义上讲,飞机(aeroplane,airplane)是指具有一具或多具发动机的动力装置产生前进的推力或拉力,由固定在机身的机翼产生升力,在大气层内飞行的重于空气的航空器。

飞机是最常见的一种固定翼航空器。按照其使用的发动机类型又可被分为喷气飞机和螺旋桨飞机。

原理

发明飞机的原理(伟大的发明飞机)(2)

飞行原理

在真实且可产生升力的机翼中,气流总是在后缘处交汇,否则在机翼后缘将会产生一个气流速度为无穷大的点。这一条件被称为库塔条件,只有满足该条件,机翼才可能产生升力。在理想气体中或机翼刚开始运动的时候,这一条件并不满足,粘性边界层没有形成。通常翼型(机翼横截面)都是上方距离比下方长,刚开始在没有环流的情况下,上下表面气流流速相同,导致下方气流到达后缘点时上方气流还没到后缘,后驻点位于翼型上方某点,下方气流就必定要绕过尖后缘与上方气流汇合。由于流体黏性(即康达效应),下方气流绕过后缘时会形成一个低压旋涡,导致后缘存在很大的逆压梯度。随即,这个旋涡就会被来流冲跑,这个涡就叫做起动涡。根据海姆霍兹旋涡守恒定律,对于理想不可压缩流体在有势力的作用下翼型周围也会存在一个与起动涡强度相等方向相反的涡,叫做环流,或是绕翼环量。环流是从机翼上表面前缘流向下表面前缘的,所以环流加上来流就导致后驻点最终后移到机翼后缘,从而满足库塔条件。由满足库塔条件所产生的绕翼环量导致了机翼上表面气流向后加速,由伯努利定理可推导出压力差并计算出升力,这一环量最终产生的升力大小亦可由库塔-茹可夫斯基方程计算:L(升力)=ρVΓ(气体密度×流速×环量值)这一方程同样可以计算马格努斯效应的气动力。根据伯努利定理——“流体速度越快,其静压值越小(静压就是流体流动时垂直于流体运动方向所产生的压力)。”因此上表面的空气施加给机翼的压力F1小于下表面的F2。F1、F2的合力必然向上,这就产生了升力。 升力的原理就是因为绕翼环量(附着涡)的存在导致机翼上下表面流速不同压力不同。

优点

喷气式客机的时速在810千米左右,机动性高。飞机飞行不受高山、河流、沙漠、海洋的阻隔,而且可根据客、货源数量随时增加班次。

据国际民航组织统计,民航平均每亿客公里的死亡人数为0.4人,是普通交通方式事故死亡人数的几十分之一到几百分之一,是比火车更为安全的交通运输方式。

缺点

价格太贵。无论是飞机本身还是飞行所消耗的油料相对其他交通运输方式都高昂的极多。

受天气情况影响。虽然航空技术已经能适应绝大多数气象条件,但是风、雨、雪、雾等气象条件仍然会影响飞机的起降安全。

起降场地也有限制。飞机必须在飞机场起降,一个城市最多不过几个飞机场,而且机场受周围净空条件的限制多分布在郊区。由于从飞机场到市区往往需要一次较长的中转过程,由此给高速列车提供了800公里以内距离的城际运输市场空间。

因此飞机只适用于重量轻,时间紧急,航程又不能太近的运输。

危险:虽然民航客机每亿客公里的死亡人数远低于其他运具,但批评者认为飞机本身旅程亦远比其他运具长,所以这个数值被拉低。在某些数据上飞机并不是特别安全。

飞机的事故率虽然比火车低,但是飞机一旦失事,将会有极少人生还甚至无人生还。飞机与地面失去联系,就无法安全飞行。

分类

飞机不仅广泛应用于民用运输和科学研究,还是现代军事里的重要武器,所以又分为民用飞机和军用飞机。

民用飞机除客机和运输机以外还有农业机、森林防护机、航测机、医疗救护机、游览机、公务机、体育机,试验研究机、气象机、特技表演机、执法机等。

飞机还可按组成部件的外形、数目和相对位置进行分类。

按机翼的数目,可分为单翼机、双翼机和多翼机。按机翼相对于机身的位置,可分为下单翼、中单翼和上单翼飞机。

按机翼平面形状,可分为平直翼飞机、后掠翼飞机、前掠翼飞机和三角翼飞机。

按水平尾翼的位置和有无水平尾翼,可分为正常布局飞机(水平尾翼在机翼之后)、鸭式飞机(前机身装有小翼面)和无尾飞机(没有水平尾翼);正常布局飞机有单垂尾、双垂尾、多垂尾和V型尾翼等型式。

按用途可分为战斗机、轰炸机、攻击机、拦截机。按推进装置的类型,可分为螺旋桨飞机和喷气式飞机;

按发动机的类型,可分为活塞式飞机、涡轮螺旋桨式飞机和喷气式飞机;按发动机的数目,可分为单发飞机、双发飞机和多发飞机。

按起落装置的型式,可分为陆上飞机、水上飞机和水陆两用飞机。

还可按飞机的飞行性能进行分类:

按飞机的飞行速度,可分为亚音速飞机、超音速飞机和高超音速飞机。

按飞机的航程,可分为近程飞机、中程飞机和远程飞机。

结构

大多数飞机由五个主要部分组成:机翼、机身、尾翼、起落装置和动力装置。

发明飞机的原理(伟大的发明飞机)(3)

飞机结构

飞机结构

机翼的主要功用是为飞机提供升力,以支持飞机在空中飞行,也起一定的稳定和操纵作用。在机翼上一般安装有副翼和襟翼。操纵副翼可使飞机滚转;放下襟翼能使机翼升力系数增大。另外,机翼上还可安装发动机、起落架和油箱等。机翼有各种形状,数目也有不同。在航空技术不发达的早期为了提供更大的升力,飞机以双翼机甚至多翼机为主,但现代飞机一般是单翼机。

在机翼设计的过程当中,经常提到的一个矛盾是飞机的稳定性和操作性两个方面,上单翼飞机好像提起来的塑料袋,他非常的稳定,但是操作性稍微差一点。下单翼飞机好像托起来的花瓶,操作性很灵活,但是稳定性就稍微逊色一点。

但考虑到机翼对发动机噪音的屏蔽作用、便于维护等,大型民用客机飞机一般采用下单翼设计,同时采用上反角安装,以提高机动性。

机身的主要功用是装载乘员、旅客、武器、货物和各种设备;还可将飞机的其它部件如尾翼、机翼及发动机等连接成一个整体。但是飞翼是将机身隐藏在机翼内的。

发明飞机的原理(伟大的发明飞机)(4)

详细结构

详细结构

尾翼包括水平尾翼(平尾)和垂直尾翼(垂尾)。水平尾翼由固定的水平安定面和可动的升降舵组成(某些型号的民用机和军用机整个平尾都是可动的控制面,没有专门的升降舵)。垂直尾翼则包括固定的垂直安定面和可动的方向舵。尾翼的主要功用是用来操纵飞机俯仰和偏转,以及保证飞机能平稳地飞行。

起落装置又称起落架,是用来支撑飞机并使它能在地面和其他水平面起落和停放。陆上飞机的起落装置,一般由减震支柱和机轮组成,此外还有专供水上飞机起降的带有浮筒装置的起落架和雪地起飞用的滑橇式起落架。它是用于起飞与着陆滑跑、地面滑行和停放时支撑飞机。

一般的飞机起落架有3个支撑点,根据这三个支撑点的排列方式,往往分为前三角起落架和后三角起落架。其中,前三角起落架指前面一个支撑点,后面两个支撑点的起落架形式,使用此类起落架的飞机往往静止时仰角较小,在起飞时很快就可以达到很高的速度,瞬间机翼的两面风速差达到临界,飞机得到足够的升力后即可起飞;后三角起落架采用的是前面两个支撑点,后面一个支撑点的形式,使用此类起落架的飞机往往静止时仰角较大,当飞机在跑道上达到一定的速度的时候,机翼两面的风速差即可达到一个临界,此时后起落架会被抬起,驾驶员继续推油门杆,同时向后拉操作杆以控制飞机平衡,当速度达到一定的值时,飞机即可起飞。

动力装置主要用来产生拉力或推力,使飞机前进。其次还可以为飞机上的用电设备提供电力,为空调设备等用气设备提供气源。

现代飞机的动力装置主要包括涡轮发动机和活塞发动机两种,应用较广泛的动力装置有四种:航空活塞式发动机加螺旋桨推进器;涡轮喷射发动机;涡轮螺旋桨发动机;涡轮风扇发动机。随着航空技术的发展,火箭发动机、冲压发动机、原子能航空发动机等,也有可能会逐渐被采用。动力装置除发动机外,还包括一系列保证发动机正常工作的系统,如燃油供应系统等。

讲到飞机的动力装置,就不得不讲一下飞机的推重比。推重比就是飞机的推力与飞机所受到的重力的比值。一般的民用飞机的推力是小于飞机的重力的,因为每增加一个KN的推力,都要增加飞机的制造成本。而当飞机的推力大于飞机的重力的时候,飞机可以实现高速爬升甚至垂直爬升,很多需要高机动性能的飞机,比如战斗机等都有很大的推力和很小的重力。

另外,等同重力的要求下,飞机的推力越大,机翼面积就越小,飞机巡航阻力就越小,速度就越快,滑跑距离就越长。反之亦然。

飞机除了上述五个主要部分之外,还装有各种仪表、通讯设备、领航设备、安全设备和其它设备等。

其他的如鸭翼式结构,由后置的主机翼与可以理解成前置水平尾翼的鸭翼构成。也就是用鸭翼来控制飞机的仰角,水平尾翼的位置是鸭翼结构的主翼,来控制飞机的横滚。

无尾结构,受益于矢量推力发动机的无尾结构飞机,只有一个多是三角形的主翼,没有控制仰角的水平尾翼和鸭翼。靠发动机推力矢量方向变化来控制飞机的仰角。

三翼面结构,同时有主翼、水平尾翼、鸭翼的飞机。操作性能更高。

双垂直尾翼结构,战斗机多用的结构,踩舵时可以让飞机不用更滚就转向。

现代飞机驾驶舱内可供驾驶员使用的飞行操纵装置通常包括:

主操纵装置:驾驶杆或驾驶盘、方向舵脚蹬、油门杆和气门杆。在某些采用电传操纵系统的飞机上,驾驶杆或驾驶盘已经被简化成位于驾驶员侧方的操纵杆。

辅助操纵装置:襟翼手柄、配平按钮、减速板手柄。

随着电子技术的发展,飞行操纵装置的形式也发生了根本性的变化。在大型飞机中,传统的机械式操纵系统已逐渐地被更为先进的电传操纵系统所取代,计算机系统全面介入飞行操纵系统,驾驶员的操作已不再像是直接操纵飞机动作。由于某些采用电传操纵系统的飞机取消了原有的驾驶杆或驾驶盘等装置而改为侧杆操纵,驾驶舱的空间显得比以往更加宽松,所以有些驾驶员称此类驾驶舱为“飞行办公室”。原子能的发现和利用又为飞机动力开辟了一个新的途径。1946年约翰·霍普金斯大学应用物理实验室分析了核动力飞机的可行性和潜在的问题。在当时最大的问题是缺乏防辐射材料的数据,其他的问题还包括飞机在运行或事故中会泄露的放射性物质,要如何对机组和地面人员进行保护,还存在试飞场地和范围的选择问题。飞机在飞行中会向大气释放放射性物质飞机自身会产生直接辐射。为此制定了核动力飞机的操作要求:及时在最不利的情况下,核动力飞机不能向大气中排放放射性物质,飞机的一切有害辐射必须被限制在飞机内部或预先指定的禁区内。

机型字母缩写:

在美国空军飞机种类中,攻击机的字母缩写为A,轰炸机的字母缩写为B,运输机的字母缩写为C,电子战机的字母缩写为E,战斗机的字母缩写为F,直升机的字母缩写为H,教练机的字母缩写为T,活塞式飞机字母缩写一般为P,侦察机字母缩写为R,超级飞机缩写为SR,通用机是U,试验机是X和Y

自动化飞行(Auto Pilot 自动驾驶)

早在地平仪被装在飞机上以后,有人就在琢磨这个想法。1914年,一名美国发明家斯派雷利用地平仪上陀螺指针作为飞机平飞的标准,用电器装置测出飞机飞行时和这个标准的偏离,再用机械装置予以校正,就使飞机保持在平飞的状态上。这就是世界上第一台自动驾驶仪。虽然它只能保持飞机的平飞,但它给后人以启迪,从此开始了飞机自动飞行的时代。20世纪70年代,电子计算机进入飞机,飞机有了自己的电子“大脑”。首先使用了三个电子计算机(飞行控制计算机)分别控制飞机三个轴的飞行状态。此时的飞机不仅能被控制平飞,而且可以控制转弯和升降。考虑到飞机在做转弯和升降运动时,它的推力必须相应的发生变化,为了要顺利地完成这些过程,就有必要同时控制发动机的推力。于是第二步又在飞机上加装了管理推力的推力控制计算机。为了使飞机真正实现自动控制飞行的全过程,也就是能“独立自主”,这就需要统一管理上述两套系统(姿态和推力)并且与其他仪表系统实行大联合。所以第三步是在飞机上又装上一台能力更强的计算机,全面管理和协调飞行。这台统管全局的计算机叫飞行管理计算机。它是飞机的核心中枢。在这个中枢的数据库内存储着各个机场及各条航路的数据。驾驶员只要选定航路的起点和终点,将命令输入这台计算机内,它就可以代替驾驶员指挥飞机起飞、爬升、巡航、下降直到降落在目的地机场。这套系统还可以在飞行全过程中即时发出指令,使飞机按照最佳的飞行状态、最合理的使用推力、最经济的油耗飞完全程,从而实现了全程自动化飞行。听起来,由这套计算机系统控制的飞机飞得比由驾驶员控制飞得还好,那么,是不是以后飞机飞行就不需要驾驶员了?答案是:不行。原因之一是飞机的航行线路要由驾驶员设定并输入到计算机中去;原因之二是飞机在起飞和降落这两个阶段中,变化因素太多,计算机只能按预先编好的程序动作,不具备灵活反应的能力;原因之三是即使飞机在巡航状态时,驾驶员可以不做任何动作去控制飞机,但他必须监视这个机器“大脑”的工作。万一这台“大脑”出现什么故障或反应不够及时,驾驶员要立刻接管驾驶飞机的任务,这样才能保证飞行安全。

黑匣子(CVR&FDR)

一架飞机失事后,有关部门都要千方百计地去寻找飞机上落下来的“黑匣子”。因为黑匣子是判断飞行事故原因最重要及最直接的证据。虽然叫黑匣子,其实它的颜色却不是黑的,而是醒目的橙色,这只是约定俗成的一个俗名。它的正式名字是飞行信息记录系统。在电子技术中,把只注重其输入和输出的信号而不关注其内部情况的仪器统统称为黑匣子。飞行信息记录系统是一种典型的黑匣子式的仪器。业内人士都叫它黑匣子,传到社会上,公众也只知道飞机上有个黑匣子。飞行信息记录系统包括两套仪器:第一个是驾驶舱话音记录器,实际上就是一个磁带录音机。从飞行开始后,它就不停地把驾驶舱内的各种声音,例如谈话、发报及其他各种声音响动全部录下来。但它只能保留停止录音前30分钟内的声音。第二个是飞行数据记录器,它把飞机上的各种数据即时记录在磁带上。早期的记录器只能记录20多种数据,但现已可达到60种以上。其中有16种是重要的必录数据,如飞机的加速度、姿态、推力、油量、操纵面的位置等等。记录的时间范围是最近的25小时。25小时以前的记录就被抹掉。

航线

飞机飞行的路线称为空中交通线,简称航线。飞机的航线不仅确定了飞机飞行具体方向、起讫点和经停点,而且还根据空中交通管制的需要,规定了航线的宽度和飞行高度,以维护空中交通秩序,保证飞行安全。

(这个是定义)飞机在空中具体是如何确定线路的呢?

首先,飞行员会把出发机场和到达机场以及途中要经过的导航点输入到飞机的电脑中。

当飞机升空后,导航点和飞机之间会不断的交换数据,从而引导飞机的自动飞行系统控制飞机往下一个导航点飞行。

也就是说,飞机在空中的线路是由空中交管指挥中心控制的。

小型机

在欧美国家,2-6座的小型飞机是一个非常活跃的市场,他们的制造商主要为小型的独立公司,通常仅生产几种机型及衍生机型。这类飞机主要为私人所有,价格较为低廉,广泛应用于私人飞行、飞行培训、观光游览、航空运动等方面。小型飞机一般只装配有一台发动机,一些飞机发烧友也在自己制造这类飞机。

小型飞机的市场很大,因此相关的制造商和机型也比较多,该领域主要有以下知名公司:

1.赛斯纳飞机公司(Cessna Aircraft Co.),美国公司。

2.派珀飞机公司(New Piper Aircraft, Inc.),美国公司。

3.派士(Pilatus Aircraft Ltd),瑞士公司。

4.钻石飞机公司(Diamond Aircraft),奥地利公司。

5.西锐设计(Cirrus Design),美国公司。

6.兰斯(Lancair International Inc. ),美国公司。

7.Liberty(Liberty Aerospace, Inc. ),美国公司。

8.Jabiru(Jabiru Aircraft Pty Ltd),澳大利亚公司。

9.Aquila(The AQUILA Aviation by Excellence AG),德国公司。

在国内,2003年以后,随着通用航空事业的普及,2~5座的通用航空器制造业逐步发展起来。在国内主要的小型通用航空器制造商为:

1.国产钻石,山东滨州制造;

2.蜜蜂系列,出到第11代,北航制造;

3.小鹰系列,当年负责为61个阶级弟兄运送药品的运五系列飞机的后续机型,石家庄制造;

4.雁洲系列,广东珠海制造,其中包括两个陆地固定翼机型、一个水上固定翼机型和一个单人直升机机型。

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页