高中数学排列组合重难点是什么(高中数学干货排列组合中的)
不同种元素
分组问题
将n个不同元素按照某些条件分成k组,称为分组问题。分组问题有平均分组、不平均分组、和部分平均分组三种情况。
1. 平均分组
1 2. 不平均分组
2 3. 部分平均分组
3 分配问题:
如果把不同的元素分配给几个不同对象,并且每个不同对象可接受的元素个数没有限制,那么实际上是先分组后分配的问题,即分组方案数乘以不同对象数的全排列数。
所以针对分配问题,需要遵守的原则是:先分组,后分配
同种元素
分组问题:
1 分配问题:
对于同种元素的分配问题,通常有两种解法:常规法和隔板法
常规法:
隔板法:
常规法:
隔板法:
经典练习题
1:将五位老师分到三个学校任教,每个学校至少分一位老师,总共有多少种分法。(答案:150种)
2:有4个不同小球放入4个不同盒子,其中有且只有一个盒子留空,有多少种不同放法?(答案:144种)
3:7个人参加义务劳动,选出6个人,分成2组,每组都是3个人,有多少种不同分法?(答案:70种)
4:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?(答案:84种)
5:现有7个完全相同的小球,将它们全部放入编号为1,2,3的三个盒子中
(1)若每个盒子至少放一个球,共有多少种不同的放法?(答案:15种)
(2)若允许出现空盒,共有多少种不同的放法?(答案:36种)
6:现有12个相同的小球,将它们全部放入编号为1,2,3,4的四个盒子中,要求每个盒子中的小球个数不小于其编号数,问不同的放法有多少种?(答案:10种)
,
免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com