共边定理专题(共边定理的应用)

共边定理专题(共边定理的应用)(1)

张景中 中国科学院院士

彭翕成 华中师范大学教育信息技术工程研究中心

我们在上一期引入了共边定理,并对共边定理的应用进行举例说明.接下来我们给出更多的例子,你会发现难题并不一定非要用复杂的方法才能解决.共边定理看似平凡,但只要运用得当,也会成为解题的利器.我们先来回顾一下这个定理.

共边定理 若直线 AB 和 PQ 相交于点 M (如图1,有四种情形),则有:

S△PAB:S△QAB=PM:QM

共边定理专题(共边定理的应用)(2)

共边比例定理

图1

共边定理专题(共边定理的应用)(3)

共边定理的四种情形

例1(2002年'希望杯"初一竞赛题)如图2,已知△ ABC 的面积是1, AF =2FC, BD = DE = EC .求四边形 GDEH 的面积.

共边定理专题(共边定理的应用)(4)

解:四边形 GDEH 不是规则四边形,不能直接求其面积,可先求出 S△BEH 和 S△BCD ,相减即得.

由共边定理, 得

共边定理专题(共边定理的应用)(5)

所以 S四边形GDEH=5/42

例2(2003年希望杯"数学邀请赛试题)如图3,△ ABC 的面积等于25, AE = ED , BD =2DC,则△ AEF 与△ BDE 的面积之和等于____,四边形 CDEF 的面积等于_____。

共边定理专题(共边定理的应用)(6)

解:利用共边定理,

共边定理专题(共边定理的应用)(7)

S 四边形CDEF =20/3

例3如图4,△ ABC 中, AD = ⅓AB ,

BE =⅓BC , CF =⅓CA .连接 AE 、 BF 、 CD ,围成△ GHI .

问:△ GHI 的面积是△ ABC 的面积的几分之几?

共边定理专题(共边定理的应用)(8)

解:由

共边定理专题(共边定理的应用)(9)

例4(1985年美国数学邀请赛试题)如图5,三条交于一点的直线把△ ABC 分成6个小三角形.已知其中4个小三角形的面积,如图上所标.求△ ABC 的面积.

共边定理专题(共边定理的应用)(10)

图5

共边定理专题(共边定理的应用)(11)

对于例4,虽然使用共边定理能够轻松解答,但我们不能就此放过它.有必要进一步思考:为什么列出的三个方程,有一个竟然可以不用呢?是不是题目本身有什么问题?

假设我们将84,40,30,35这四个数中的一个换成 z ,譬如将84换成 z ,那么方程组就有三个方程,三个未知数,也是可以求解的,但计算的难度就要增加不少了.

由以上分析可以知道,如果我们已知6个小三角形中其中3个的面积,就可以求出其余3个小三角形的面积.那么我们可以断定例4有多余的条件,这多余的条件带来的好处就是使题目的难度降低了.

本文的例4给予我们一个启示.对于较简单的题目,我们解答完成后,不要轻易丢弃,要做进一步思考,这样就可能得到更一般的结论,甚至还能发现题目中的漏洞.这对于提高我们的解题能力会大有裨益.

八年级数学·配合北师大教材

特别收录

共边定理专题(共边定理的应用)(12)

共边定理专题(共边定理的应用)(13)

共边定理专题(共边定理的应用)(14)

共边定理专题(共边定理的应用)(15)

共边定理专题(共边定理的应用)(16)

科学尚未普及,媒体还需努力。感谢阅读,再见。

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页