七年级下册数学复习资料推荐(七年级数学复习资料)
第一章有理数
1.有理数:
(1)凡能写成q/p(p、q为整数,p不为0)形式的数,都是有理数,整数和分数统称有理数.
注意:0即不是正数,也不是负数;-a不一定是负数, a也不一定是正数;p不是有理数;
(2)有理数的分类:
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数: 0和正整数; a>0 a是正数; a<0 a是负数;
a≥0 a是正数或0 a是非负数; a≤ 0 a是负数或0 a是非正数.
2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.
3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b c的相反数是-(a-b c)= -a b-c;a-b的相反数是b-a;a b的相反数是-a-b;
(3)相反数的和为0 Û a b=0 Û a、b互为相反数.
(4)相反数的商为-1.
(5)相反数的绝对值相等.
4.绝对值:
(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;
注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2) |a|是重要的非负数,即|a|≥0,非负性;
5.有理数比大小:
(1)正数永远比0大,负数永远比0小;
(2)正数大于一切负数;
(3)两个负数比较,绝对值大的反而小;
(4)数轴上的两个数,右边的数总比左边的数大;
(5)-1,-2, 1, 4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
6.倒数:乘积为1的两个数互为倒数;
注意:0没有倒数; 若ab=1 a、b互为倒数; 若ab=-1 a、b互为负倒数.
等于本身的数汇总:
相反数等于本身的数:0
倒数等于本身的数:1,-1
绝对值等于本身的数:正数和0
平方等于本身的数:0,1
立方等于本身的数:0,1,-1.
7. 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a b=b a ;(2)加法的结合律:(a b) c=a (b c).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a (-b).
10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;
(2)任何数与零相乘都得零;
(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。
11 有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b c)=ab ac .(简便运算)
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,a/0无意思。
13.有理数乘方的法则:(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;
14.乘方的定义:(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
(3)a2是重要的非负数,即a2≥0;若a2 |b|=0 Û a=0,b=0;
(4)正数的任何次幂都是正数,0的任何次幂都是0;负数的奇次幂是负数,负数的偶次幂是正数。
15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1, 整数位数=10的指数 1
16.近似数的精确位:一个近似数,四舍五入到哪一位,就说这个近似数精确到那一位.
17.混合运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤。
18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。
第二章 整式的加减
1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。
2.单项式的系数与次数:单项式中的数字因数,称单项式的系数(要包括前面的符号);
单项式中所有字母指数的和,叫单项式的次数(只与字母有关)。
3.多项式:几个单项式的和叫多项式。
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;
5.整式包括了单项式和多项式(整式是代数式,但是代数式不一定是整式)。
6.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项(与系数无关,与字母的排列顺序无关)。
7.合并同类项法则:系数相加,字母与字母的指数不变.
8.去(添)括号法则:去(添)括号时,若括号前边是“ ”号,括号里的各项都不变号; 若括号前边是“-”号,括号里的各项都要变号.
9.整式的加减:一找:(标记);二“ ”(务必用 号开始合并)三合:(合并)
10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。
第三章 一元一次方程
1.等式:用“=”号连接而成的式子叫等式.
2.等式的性质:
等式性质1:等式两边都加上(或减去)同一个数(或式子),结果仍相等;
等式性质2:等式两边都乘以(或除以)同一个不为零的数,结果仍相等.
3.方程:含未知数的等式,叫方程(方程是含有未知数的等式,但等式不一定是方程).
4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”。
5.移项:把等式一边的某项变号后移到另一边叫移项.移项的依据是等式性质1(移项变号).
6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
7.一元一次方程的标准形式: ax b=0(x是未知数,a、b是已知数,且a≠0).
8.一元一次方程解法的一般步骤:
化简方程----------分数基本性质
去 分 母----------同乘(不漏乘)最简公分母
去 括 号----------注意符号变化
移 项----------变号(留下靠前)
合并同类项--------合并后符号
系数化为1---------除前面
10.列一元一次方程解应用题:
(1)读题分析法:………… 多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.
(2)画图分析法: ………… 多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.
11.列方程解应用题的常用公式:
(1)行程问题: 路程=速度/时间 ;时间=路程/速度
(2)工程问题:工作量=工作效率/工作时间 ;工时=工作量/工作效率
工程问题常用等量关系: 先做的 后做的=完成量
(3)顺水逆水问题:
顺流速度=静水速度 水流速度,逆流速度=静水速度-水流速度;
顺水逆水问题常用等量关系: 顺水路程=逆水路程
(4)商品利润问题: 售价=定价×几折/10;利润问题常用等量关系:售价-进价=利润
(5)配套问题
(6)分配问题
第四章 图形初步认识
(一)多姿多彩的图形
立体图形:棱柱、棱锥、圆柱、圆锥、球等.
1、几何图形
平面图形:三角形、四边形、圆、多边形等.
主视图---------从正面看
2、几何体的三视图 左视图---------从左边看
俯视图---------从上面看
(1)会判断简单物体(棱柱、圆柱、圆锥、球)的三视图.
(2)能根据三视图描述基本几何体或实物原型.
3、立体图形的平面展开图
(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.
(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.
4、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形最基本的图形.
线:面和面相交的地方是线,分为直线和曲线.
面:包围着体的是面,分为平面和曲面.
体:几何体也简称体.
(2)点动成线,线动成面,面动成体.
(二)直线、射线、线段
1、基本概念
名称 |
直线 |
射线 |
线段 |
图形 | |||
端点个数 |
无 |
一个 |
两个 |
表示法 |
直线a 直线AB(BA) |
射线a 射线AB |
线段a 线段AB(BA) |
作法叙述 |
作直线a 作直线AB; |
作射线a 作射线AB |
作线段a; 作线段AB; 连接AB |
延长 |
向两端无限延长 |
向一端无限延长 |
不可延长 |
2、直线的性质
经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.
3、画一条线段等于已知线段
(1)度量法
(2)用尺规作图法
4、线段的长短比较方法
(1)度量法
(2)叠合法
(3)圆规截取法
5、线段的中点(二等分点)、三等分点、四等分点等
定义:把一条线段平均分成两条相等线段的点.
图形:
A M B
符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.
6、线段的性质
两点的所有连线中,线段最短.简单地:两点之间,线段最短.
7、两点的距离
连接两点的线段的长度叫做两点的距离(距离是线段的长度,而不是线段本身).
8、点与直线的位置关系
(1)点在直线上(或者直线经过点) (2)点在直线外(或者直线不经过点).
(三)角
1、角:有公共端点的两条射线所组成的图形叫做角.
2、角的表示法(四种):
表示方法 | 图例 |
记法 |
适用范围 |
用三个大写字母表示 |
ÐAOB或ÐBOA |
任何情况下都适应。表示端点的字母必须写在中间。 | |
用一个大写字母表示 |
ÐA |
以这个点为顶点的角只有一个。 | |
用数字表示 |
Ð1 |
任何情况下都适用。但必须在靠近顶点处加上弧线表示角的范围,并注上数字或希腊字母。 | |
用希腊字母表示 |
Ða |
3、角的分类
∠β |
锐角 |
直角 |
钝角 |
平角 |
周角 |
范围 |
0<∠β<90° |
∠β=90° |
90°<∠β<180° |
∠β=180° |
∠β=360° |
4、角的比较方法
(1)度量法
(2)叠合法
5、角的四则运算
角的和、差、倍、分及其近似值
6、画一个角等于已知角
(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.
(2)借助量角器能画出给定度数的角.
(3)用尺规作图法.
7、角的平分线
定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线(若OB是ÐAOC的平分线,则ÐAOB=ÐBOC=1/2ÐAOC, ÐAOC=2ÐAOB =2ÐBOC).
9、互余、互补
(1)若∠1 ∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.
(2)若∠1 ∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.
(3)∠1的余角可以用90°-∠1表示;∠1的补角可以用180°-∠1表示.
(4)余角的性质:同角(等角)的余角相等;
补角的性质:同角(等角)的补角相等
10、方向角
(1)正方向
(2)南或北写在前面,东或西写在后面
(北偏东、北偏西、南偏东、南偏西)
,免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com