三角函数考法套路总结(A-level数学知识点讲解)

Trigonometric functions for acute angles 锐角的三角函数

There are three basic trigonometric functions for acute angles: Sine (Sin), Cosine (Cos), and Tangent (tan).

锐角有三个基本的三角函数。正弦(Sin),余弦(Cos),和正切(Tan)。

三角函数考法套路总结(A-level数学知识点讲解)(1)

When using a right-angled triangle we get 当使用一个直角三角形时,我们得到:

三角函数考法套路总结(A-level数学知识点讲解)(2)

三角函数考法套路总结(A-level数学知识点讲解)(3)

These functions have a unique value for an acute angle that can be obtained from a scientific calculator.

这些函数对一个锐角有一个独特的数值,可以从科学计算器中得到。

These formulae are only applicable for an acute angle in a right-angled triangle, and so the next stage is to extend to work with any angle in radians and degrees.

这些公式只适用于直角三角形中的锐角,因此下一阶段要扩展到以弧度和度数计算的任何角度。

Trigonometric functions for positive and negative angles 正和负的角度的三角函数

On a coordinate grid a general angle is measured from the positive x-axis and is represented by the angle through which a line OM rotates about the origin.

在坐标网格上,一般的角度是从正X轴开始测量的,并由线OM围绕原点旋转的角度来表示。

When we rotate anti-clockwise, the angle is positive while a clockwise rotation gives a negative angle.

当我们逆时针旋转时,角度是正的,而顺时针旋转则是负的。

三角函数考法套路总结(A-level数学知识点讲解)(4)

Trigonometric functions for any angle in radians and degrees 以弧度和度为单位的任何角度的三角函数

The four quadrants of the Cartesian axes are as follows 直角坐标轴的四个象限如下:

三角函数考法套路总结(A-level数学知识点讲解)(5)

As the line OM rotates, the point M moves to the first quadrant where its coordinates are both positive, and into the second quadrant, where the x-coordinate becomes negative.

随着直线OM的旋转,点M移动到第一象限,其坐标都是正的,并进入第二象限,其x坐标变成了负的。

In the third quadrant, both coordinates are negative and finally, in the fourth quadrant, the point has a positive x- and negative y-coordinate. (See below.)

在第三象限,两个坐标都是负的,最后,在第四象限,该点的X坐标是正的,Y坐标是负的。(见下文)。

三角函数考法套路总结(A-level数学知识点讲解)(6)

You can see that the angle MON, called a, is always acute, and measured from the x-axis.

你可以看到角度MON,称为a,总是锐角,并从X轴开始测量。

For example:

三角函数考法套路总结(A-level数学知识点讲解)(7)

The signs of the trigonometric functions depend on which quadrant the point M lies in and represent the signs of the x- and y-coordinates of M.

三角函数的符号取决于点M位于哪个象限,代表M的x坐标和y坐标的符号。

Learn the information in the following diagrams to help you understand the signs.

学习以下图表中的信息,以帮助你理解这些符号。

First quadrant 第一象限

All the functions are positive. 所有的函数都是正数。

三角函数考法套路总结(A-level数学知识点讲解)(8)

Second quadrant 第二象限

三角函数考法套路总结(A-level数学知识点讲解)(9)

By looking at the signs of the coordinates of M, we see that the trigonometric functions of are 通过观察M的坐标的符号,我们看到M的三角函数是:

三角函数考法套路总结(A-level数学知识点讲解)(10)

Third quadrant 第三象限

三角函数考法套路总结(A-level数学知识点讲解)(11)

The signs of the coordinates of M show us that the trigonometric functions are M的坐标的符号告诉我们,三角函数是:

三角函数考法套路总结(A-level数学知识点讲解)(12)

Fourth quadrant 第四象限

三角函数考法套路总结(A-level数学知识点讲解)(13)

The signs of the coordinates of M show us that the trigonometric functions of are M的坐标的符号告诉我们,其三角函数是:

三角函数考法套路总结(A-level数学知识点讲解)(14)

This can be summarised as 这可以归纳为:

三角函数考法套路总结(A-level数学知识点讲解)(15)

These sign rules and the value of the acute angle a allow you to find the value of any trigonometric function of any angle.

这些符号规则和锐角a的值允许你找到任何角度的三角函数的值。

Example:

Find the values of sin 150, sin 210 and sin 690 if sin 30 = 0.5. 如果sin 30=0.5,求sin 150、sin 210和sin 690的值。

sin 150 = sin 30 = 0.5

sin 210 = - sin 30 = - 0.5

sin 690 = sin 330 = - sin 30 = -0.5

You also need to be aware of negative angles created from the rotation of M in a clockwise direction.

你还需要注意M沿顺时针方向旋转所产生的负角。

三角函数考法套路总结(A-level数学知识点讲解)(16)

i.e. each position of line OM gives us two different values of theta, one that is positive and one that is negative.

即OM线的每个位置都给我们两个不同的theta值,一个是正值,一个是负值。

Example:

三角函数考法套路总结(A-level数学知识点讲解)(17)

Here a = 200 so both angles have the same trigonometric functions.

这里a=200,所以两个角的三角函数相同。

Therefore:

sin 160° = sin (-200° ) = sin 20°

cos 160° = cos (-200° ) = - cos 20°

tan 160° = tan (-200° ) = - tan 20°

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页