线程池的核心参数怎么确定(线程池中各个参数如何合理设置)

欢迎大家关注我的公众号【老周聊架构】,Java后端主流技术栈的原理、源码分析、架构以及各种互联网高并发、高性能、高可用的解决方案,下面我们就来聊聊关于线程池的核心参数怎么确定?接下来我们就一起去了解一下吧!

线程池的核心参数怎么确定(线程池中各个参数如何合理设置)

线程池的核心参数怎么确定

欢迎大家关注我的公众号【老周聊架构】,Java后端主流技术栈的原理、源码分析、架构以及各种互联网高并发、高性能、高可用的解决方案。

一、前言

在开发过程中,好多场景要用到线程池。每次都是自己根据业务场景来设置线程池中的各个参数。这两天又有需求碰到了,索性总结一下方便以后再遇到可以直接看着用。虽说根据业务场景来设置各个参数的值,但有些万变不离其宗,掌握它的原理对如何用好线程池起了至关重要的作用。那我们接下来就来进行线程池的分析。

二、ThreadPoolExecutor的重要参数

我们先来看下threadPoolExecutor的带的那些重要参数的构造器。

public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { ... }

1、corePoolSize: 核心线程数

这个应该是最重要的参数了,所以如何合理的设置它十分重要。

  • 核心线程会一直存活,及时没有任务需要执行。
  • 当线程数小于核心线程数时,即使有线程空闲,线程池也会优先创建新线程处理。
  • 设置allowCoreThreadTimeout=true(默认false)时,核心线程会超时关闭。

如何设置好的前提我们要很清楚的知道CPU密集型和IO密集型的区别。

(1)、CPU密集型

CPU密集型也叫计算密集型,指的是系统的硬盘、内存性能相对CPU要好很多,此时,系统运作大部分的状况是CPU Loading 100%,CPU要读/写I/O(硬盘/内存),I/O在很短的时间就可以完成,而CPU还有许多运算要处理,CPU Loading 很高。

在多重程序系统中,大部分时间用来做计算、逻辑判断等CPU动作的程序称之CPU bound。例如一个计算圆周率至小数点一千位以下的程序,在执行的过程当中绝大部分时间用在三角函数和开根号的计算,便是属于CPU bound的程序。

CPU bound的程序一般而言CPU占用率相当高。这可能是因为任务本身不太需要访问I/O设备,也可能是因为程序是多线程实现因此屏蔽掉了等待I/O的时间。

(2)、IO密集型

IO密集型指的是系统的CPU性能相对硬盘、内存要好很多,此时,系统运作,大部分的状况是CPU在等I/O (硬盘/内存) 的读/写操作,此时CPU Loading并不高。

I/O bound的程序一般在达到性能极限时,CPU占用率仍然较低。这可能是因为任务本身需要大量I/O操作,而pipeline做得不是很好,没有充分利用处理器能力。

好了,了解完了以后我们就开搞了。

(3)、先看下机器的CPU核数,然后在设定具体参数:

自己测一下自己机器的核数

System.out.println(Runtime.getRuntime().availableProcessors());

即CPU核数 = Runtime.getRuntime().availableProcessors()

(4)、分析下线程池处理的程序是CPU密集型还是IO密集型

CPU密集型:corePoolSize = CPU核数 1

IO密集型:corePoolSize = CPU核数 * 2

2、maximumPoolSize:最大线程数

  • 当线程数>=corePoolSize,且任务队列已满时。线程池会创建新线程来处理任务。
  • 当线程数=maxPoolSize,且任务队列已满时,线程池会拒绝处理任务而抛出异常。

3、keepAliveTime:线程空闲时间

  • 当线程空闲时间达到keepAliveTime时,线程会退出,直到线程数量=corePoolSize。
  • 如果allowCoreThreadTimeout=true,则会直到线程数量=0。

4、queueCapacity:任务队列容量(阻塞队列)

  • 当核心线程数达到最大时,新任务会放在队列中排队等待执行

5、allowCoreThreadTimeout:允许核心线程超时

6、rejectedExecutionHandler:任务拒绝处理器

两种情况会拒绝处理任务:

  • 当线程数已经达到maxPoolSize,且队列已满,会拒绝新任务。
  • 当线程池被调用shutdown()后,会等待线程池里的任务执行完毕再shutdown。如果在调用shutdown()和线程池真正shutdown之间提交任务,会拒绝新任务。

线程池会调用rejectedExecutionHandler来处理这个任务。如果没有设置默认是AbortPolicy,会抛出异常。

ThreadPoolExecutor 采用了策略的设计模式来处理拒绝任务的几种场景。

这几种策略模式都实现了RejectedExecutionHandler 接口。

  • AbortPolicy 丢弃任务,抛运行时异常。
  • CallerRunsPolicy 执行任务。
  • DiscardPolicy 忽视,什么都不会发生。
  • DiscardOldestPolicy 从队列中踢出最先进入队列(最后一个执行)的任务。
三、如何设置参数

默认值:

corePoolSize = 1 maxPoolSize = Integer.MAX_VALUE queueCapacity = Integer.MAX_VALUE keepAliveTime = 60s allowCoreThreadTimeout = false rejectedExecutionHandler = AbortPolicy()

如何来设置呢?

需要根据几个值来决定

tasks :每秒的任务数,假设为500~1000

taskcost:每个任务花费时间,假设为0.1s

responsetime:系统允许容忍的最大响应时间,假设为1s

做几个计算

corePoolSize = 每秒需要多少个线程处理?

threadcount = tasks/(1/taskcost) = tasks*taskcout = (500 ~ 1000)*0.1 = 50~100 个线程。

corePoolSize设置应该大于50。

根据8020原则,如果80%的每秒任务数小于800,那么corePoolSize设置为80即可。

queueCapacity = (coreSizePool/taskcost)*responsetime

计算可得 queueCapacity = 80/0.1*1 = 800。意思是队列里的线程可以等待1s,超过了的需要新开线程来执行。

切记不能设置为Integer.MAX_VALUE,这样队列会很大,线程数只会保持在corePoolSize大小,当任务陡增时,不能新开线程来执行,响应时间会随之陡增。

maxPoolSize 最大线程数在生产环境上我们往往设置成corePoolSize一样,这样可以减少在处理过程中创建线程的开销。

rejectedExecutionHandler:根据具体情况来决定,任务不重要可丢弃,任务重要则要利用一些缓冲机制来处理。

keepAliveTime和allowCoreThreadTimeout采用默认通常能满足。

以上都是理想值,实际情况下要根据机器性能来决定。如果在未达到最大线程数的情况机器cpu load已经满了,则需要通过升级硬件和优化代码,降低taskcost来处理。


以下是我自己的的线程池配置:

@Configuration public class ConcurrentThreadGlobalConfig { @Bean public ThreadPoolTaskExecutor defaultThreadPool() { ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor(); //核心线程数目 executor.setCorePoolSize(65); //指定最大线程数 executor.setMaxPoolSize(65); //队列中最大的数目 executor.setQueueCapacity(650); //线程名称前缀 executor.setThreadNamePrefix("DefaultThreadPool_"); //rejection-policy:当pool已经达到max size的时候,如何处理新任务 //CALLER_RUNS:不在新线程中执行任务,而是由调用者所在的线程来执行 //对拒绝task的处理策略 executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy()); //线程空闲后的最大存活时间 executor.setKeepAliveSeconds(60); //加载 executor.initialize(); return executor; } }

四、线程池队列的选择

workQueue - 当线程数目超过核心线程数时用于保存任务的队列。主要有3种类型的BlockingQueue可供选择:无界队列,有界队列和同步移交。从参数中可以看到,此队列仅保存实现Runnable接口的任务。

这里再重复一下新任务进入时线程池的执行策略:

  • 当正在运行的线程小于corePoolSize,线程池会创建新的线程。
  • 当大于corePoolSize而任务队列未满时,就会将整个任务塞入队列。
  • 当大于corePoolSize而且任务队列满时,并且小于maximumPoolSize时,就会创建新额线程执行任务。
  • 当大于maximumPoolSize时,会根据handler策略处理线程。

1、无界队列

队列大小无限制,常用的为无界的LinkedBlockingQueue,使用该队列作为阻塞队列时要尤其当心,当任务耗时较长时可能会导致大量新任务在队列中堆积最终导致OOM。阅读代码发现,Executors.newFixedThreadPool 采用就是 LinkedBlockingQueue,而博主踩到的就是这个坑,当QPS很高,发送数据很大,大量的任务被添加到这个无界LinkedBlockingQueue 中,导致cpu和内存飙升服务器挂掉。

当然这种队列,maximumPoolSize 的值也就无效了。当每个任务完全独立于其他任务,即任务执行互不影响时,适合于使用无界队列;例如,在 Web 页服务器中。这种排队可用于处理瞬态突发请求,当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。

2、有界队列

当使用有限的 maximumPoolSizes 时,有界队列有助于防止资源耗尽,但是可能较难调整和控制。常用的有两类,一类是遵循FIFO原则的队列如ArrayBlockingQueue,另一类是优先级队列如PriorityBlockingQueue。PriorityBlockingQueue中的优先级由任务的Comparator决定。

使用有界队列时队列大小需和线程池大小互相配合,线程池较小有界队列较大时可减少内存消耗,降低cpu使用率和上下文切换,但是可能会限制系统吞吐量。

3、同步移交队列

如果不希望任务在队列中等待而是希望将任务直接移交给工作线程,可使用SynchronousQueue作为等待队列。SynchronousQueue不是一个真正的队列,而是一种线程之间移交的机制。要将一个元素放入SynchronousQueue中,必须有另一个线程正在等待接收这个元素。只有在使用无界线程池或者有饱和策略时才建议使用该队列。

最后我分享一篇用动画展示线程池各个参数的文章:https://zhuanlan.zhihu.com/p/112527671 ,希望对你有帮助。

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页