锐角三角形垂线交点的性质(锐角三角形一条边和另外两边上高的垂足连线交点)
如图三角形ABC 中,AD、BE、CF分别是BC、AC、AB上的高,O为三角形外心,H为垂心 M为BC延长线和EF延长线的交点,N为AB延长线和ED延长线的交点,L为AC延长线和FD延长线交点。连接MN 和NL
则:1、OB⊥FD、OC⊥DE、OA⊥EF
2、连接OH,则OH的中点K为三角形DEF的外心;
3、OH⊥MN 、OH⊥NL , L、M、N三点共线
提示:1、在B点作圆O的切线BT,可以证明FD∥BT
2、取BC中点A1,可证明E、F、D、A1四点共圆 :∠DEF=∠DEB ∠BEF=∠DAB ∠BCF=90-∠ABC (90-∠B)=2(90-∠ABC)=2∠BCF=∠DA1F OA1⊥BC,AD⊥BC,K在DA1的中垂线上。证明K为三角形DEF外心。
3、BDEA四点共圆得NB*NA=ND*NC,得N在圆O和圆K的根轴,同理得M、L也在两圆根轴上,OK⊥NL, OK⊥MN,三点共线。
,免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com