无理数的定义及概念(无理数的正确解释)
无理数的正确解释在小学教无理数时,首先举例圆周长/直径是一个常数,即圆的直径是确定长度,其圆周长也是确定长度,圆周长/直径必然一定是一个确定的常数,即圆周率具有客观存在性,这样解释才合情合理、顺理成章但发现圆周率无法用十进制数来精准表达,只能用四舍五入的十进制约数来表达,它的小数部分表现为无限不循环小数,之所以给圆周率这样的数取名为无理数,是因为它存在无限位十进制数,表现为不确定数值,但它又是确定数值,必须把数值不确定的内容改为确定的内容,无理数的定义必须兼顾不确定内容和确定内容,这就产生无理数能否精准描述的疑虑,因此无理数的定义只能是:存在无限不循环小数的数是无理数又发现无限不循环小数是无限位数,因为有限位数才是确定数值,所以无限位数肯定不是确定数值,无限位数根本就不能表达常数、确定数值的无理数(圆周率),这里就应该告诉小学生,无限不循环小数是单调递增有界的小数,到大学将详细介绍无限不循环小数存在极限值,虽然它是无限位数,但是它存在唯一确定的极限值,这样描述、解释无理数,确定无理数=确定的整数部分 无限不循环小数的极限值(唯一确定),只有这个精准表达式,才能与无理数是确定值相吻合,才能消除、消解无限不循环小数不能表达确定数值的疑虑、顾虑,才能合情合理,才能使数学的前后定义不产生自相矛盾内容、逻辑,才能正确解释无理数无理数并不是存在无限不循环小数,存在无限位十进制数,无理数的数值就一定不确定,无理数的数值由整数部分和无限不循环小数的极限值来确定,不是由无限不循环小数来确定的,下面我们就来聊聊关于无理数的定义及概念?接下来我们就一起去了解一下吧!
无理数的定义及概念
无理数的正确解释
在小学教无理数时,首先举例圆周长/直径是一个常数,即圆的直径是确定长度,其圆周长也是确定长度,圆周长/直径必然一定是一个确定的常数,即圆周率具有客观存在性,这样解释才合情合理、顺理成章。但发现圆周率无法用十进制数来精准表达,只能用四舍五入的十进制约数来表达,它的小数部分表现为无限不循环小数,之所以给圆周率这样的数取名为无理数,是因为它存在无限位十进制数,表现为不确定数值,但它又是确定数值,必须把数值不确定的内容改为确定的内容,无理数的定义必须兼顾不确定内容和确定内容,这就产生无理数能否精准描述的疑虑,因此无理数的定义只能是:存在无限不循环小数的数是无理数。又发现无限不循环小数是无限位数,因为有限位数才是确定数值,所以无限位数肯定不是确定数值,无限位数根本就不能表达常数、确定数值的无理数(圆周率),这里就应该告诉小学生,无限不循环小数是单调递增有界的小数,到大学将详细介绍无限不循环小数存在极限值,虽然它是无限位数,但是它存在唯一确定的极限值,这样描述、解释无理数,确定无理数=确定的整数部分 无限不循环小数的极限值(唯一确定),只有这个精准表达式,才能与无理数是确定值相吻合,才能消除、消解无限不循环小数不能表达确定数值的疑虑、顾虑,才能合情合理,才能使数学的前后定义不产生自相矛盾内容、逻辑,才能正确解释无理数。无理数并不是存在无限不循环小数,存在无限位十进制数,无理数的数值就一定不确定,无理数的数值由整数部分和无限不循环小数的极限值来确定,不是由无限不循环小数来确定的。
,免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com