f=0为什么是既奇又偶的函数(若fx1)

高考数学课程:函数的自变量是X吗?

f=0为什么是既奇又偶的函数(若fx1)(1)

对于很多同学一直没明白这么一个题,若f(x 1)是奇函数,为什么f(-x 1)=-f(x 1)。总觉得是应该(x 1)吧都变为-的,为什么不能当整体呢?

看下面的例题:

f=0为什么是既奇又偶的函数(若fx1)(2)

函数的自变量是x吗?

从以上例题看出两点:

1.f(x 1)为奇函数不等于f(x)为奇函数;反过来,f(x)为奇函数也不等于f(x 1)为奇函数。也就是说,f(x)为奇函数和f(x 1)为奇函数是两回事。

通常情况下,如果没有周期的话,f(x)和f(x 1)不太可能同时为奇函数,毕竟要平移一个单位。如果其中一个函数为奇函数,图象关于(0,0)对称,平移一个单位之后,对称中心就不再是(0,0)了。

2.不管是f(x)还是f(x 1),函数的自变量始终是x。看上面的六个例子,是不是这样?

如果承认第2点的事实,那么根据奇函数的定义:自变量相反,则函数值相反。

所以f(x 1)为奇函数等价于f(-x 1)=-f(x 1)。

可以当作整体呢?

当然可以。

令x 1=t,则f(x 1)就转化为f(t).那么f(x 1)为奇函数是否意味着f(t)为奇函数呢?

如果你回答“是”,那就与我上面讲的第1点矛盾。

也就是说,通过代换,你竟然可以把f(x 1)为奇函数变为f(x)为奇函数?

错在哪里呢?

脑中始终要有自变量的概念,说函数是否为奇偶函数之前,要确定哪个是自变量,即确定是关于哪个自变量的奇偶函数。

举个例子就明白了。

f=0为什么是既奇又偶的函数(若fx1)(3)

当然,从图象平移的角度更好理解。

f=0为什么是既奇又偶的函数(若fx1)(4)

f(-x 1)=-f(x 1)所表达的函数特征,也是图象关于(1,0)对称。

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页