动力电池管理系统行业现状及趋势(德耐隆浅谈动力电池BMS管理系统)
新能源汽车动力电池包含:能量管理、热失控管理、充放电、能量回收等等重要功能。那么对于新能源汽车BMS如此重要,今天德耐隆就和大家浅聊一下动力电池管理系统(BMS)策略与材料应用。
动力电池管理系统(Battery Management System,缩写BMS),电动汽车动力电池包的低压管理系统,在整个电动汽车上。为了保护电芯和整个电池包不受放热反应的影响,需要一个电子安全电路,即电池管理系统(BMS)。BMS最重要的功能是安全防护,使电池系统中电芯的电压、温度和电流不超过规定的极限。一般来说,BMS是一种模拟和/或数字电子设备。
电池管理系统和动力电池组一起组成电池包整体。与电池管理系统有通讯关系的两个部件,整车控制器和充电机。电池管理系统,向上,通过CANbus与电动汽车整车控制器通讯,上报电池包状态参数,接收整车控制器指令,配合整车需要,确定功率输出;向下,监控整个电池包的运行状态,保护电池包不受过放、过热等非正常运行状态的侵害;充电过程中,与充电机交互,管理充电参数,监控充电过程正常完成。
一直以来新能源汽车没有发展起来的原因就是电池,而电池的是推动新能源汽车进一步发展的瓶颈。现有技术无法保证续航里程,其实最早发展的是电动车,比燃油车更早,但因为续航的原因,在100多年前,电动车胎死腹中,直到近些年,能量密度的提升特别是BMS的出现,也就是BMS的出现,使得纯电动汽车有了跨越式的发展。
BMS主要功能
1、参数检测实时采集电池充放电状态。采集的数据有电池总电压、电池总电流、每包电池测点温度以及单体模块电池电压等。2、剩余电量(SOC)估计电池剩余能量相当于传统车的油量。为了让司机及时了解SOC,系统应即时采集充放电电流、电压等参数,通过相应的算法进行SOC的估计。3、充放电控制根据电池的荷电状态控制对电池的充放电。若某个参数超标,如单体电池电压过高或过低,为保证电池组的正常使用及性能的发挥,系统将切断继电器,停止电池的能量供给。4、热管理实时采集每包电池测点温度,通过对散热风扇的控制防止电池温度过高。5、均衡控制由于每块电池个体的差异以及使用状态的不同等原因,因此电池在使用过程中不一致性会越来越严重。系统应能判断并自动进行均衡处理。6、故障诊断通过对电池参数的采集,系统具有预测电池性能、故障诊断和提前报警等功能。7、信息监控电池的主要信息在车载显示终端进行实时显示。8、参数标定由于不同的车型使用的电池类型、数量、电池包大小和数量不同,因此系统应具有对车型、车辆编号、电池类型和电池模式等信息标定的功能。BMS通过RS232接口与上位机标定软件进行通信来实现。9、CAN总线接口根据整车CAN通信协议,与整车其他系统进行信息共享。
今年7月,长城也推出宣称能不起火、不爆炸的大禹电池。大禹电池以811高镍电芯为基础,通过热源隔断、热流分配、定向排爆、高温绝缘等设计理念,以“疏导”的方式降低起火概率。此新闻一出引发业内的热议。
由此可见,动力电池热失控是大家都关心的话题之一,我们今天就拿“热失控”来展开话题。
热管理
电池管理系统能够对电池包施加主动作用。电池温度过高时,热管理系统开动冷却功能,电池温度过低无法启动行车时,热管理系统开动加热功能。对于主控模块,热管理只是一套算法和几个接触器控制端口。热管理技术含量,主要集中在冷却加热设备以及与之匹配的冷却出现冷凝水、风冷解决密封等级等等具体问题上。
具备热管理功能,对整个电池系统意义重大,是设计者能够阻止热失控发生的重要手段,是从设计上保障动力电池安全和延长使用寿命的不二法门。
动力电池包的安全问题,从根本上说都是电池系统热失控问题。系统散热能力与系统生热能力不匹配,热量在系统内积累,电池温度上升,最终导致燃爆等恶略后果。
锂电池负极SEI膜,是在系统温度上升过程中,最先出现失效的结构,反应起始温度在90到100°左右。考虑电池的内外温差以及保留部分冗余设计,这就是我们的电池包工作温度上限一般设置在50到60°之间的原因。
正常使用中,防止热失控,一方面避免过多热量的产生和积累;另一方面,提高热管理水平,让电池在它最适合的温度环境下工作。
带来热失控风险的行为
在过高温度下使用
原因如前面所述,从锂电池负极SEI膜溶解开始,失去保护的负极与电解液反应放热,电解液分解放热,正极分解放热,这些热量积累起来,反应逐渐加剧,反应从一只单体蔓延到附近电芯,一个模组的反应,给整个电池箱内的电芯加热,这就是所谓热失控的过程。
在过低温度下使用
电池包都会标注一个使用温度范围,低于下限温度,电池也是无法正常工作的。低温放电,理论上没有跟热失控有明确关联,但低温造成电解质活性降低,导电能力变差,进而导致放电能力变差,就是我们所谓的放不出电来,车子没劲儿。如果是低温强行充电,则会造成负极析锂问题,容量会受到永久损伤不说,析出的锂积累在那里,是热失控的重要原因。
过大倍率使用
超过电芯允许能力的大倍率放电,系统热量不能及时散去,热量积累,逐渐加大了热失控的风险。同时,过大倍率的放电,使得正极材料的锂离子嵌入过程超速进行,造成正极晶格坍塌,容量永久性损失。
大倍率充电,使得锂离子通过SIE膜的速度低于锂离子向负极积聚的速度,出现锂单质在负极表面堆积现象,如果过程反复进行,锂枝晶不断生长,最终会刺破隔膜,造成内短路,引发热失控。
过充过放电
过充,充电截止电压超过了电芯的最高电压,造成正极活性材料晶格塌陷,锂离子脱嵌通道受阻,使内阻急剧升高,产生大量热;负极堆积了过量的锂单质,附着在负极表面,所谓析锂现象。正负极的反应过程都容易最终走向热失控。
过放,本来应该是锂离子从负极脱出,嵌入正极晶格,但负极没有那么多的正离子可以提供,使得负极的集流体铜排失去铜离子,铜离子游离在电解质中,附着在正极或者负极,都会造成整个系统的失效。
BMS的辅助材料应用从大量的实验得知,温度对电池包内部的影响是不能忽视的!为了减少重量及成本, 配件对材料减薄及实际保温隔热有持续的需求,然而这对于材料的可靠性甚至换热性能都会带来新的挑战,未来也将通过保温材料优化解决。
车企为保证安全出尽奇招,部分电池包生产商会通过填充物实现隔离来防止热失控蔓延。隔离的目的是阻断传播,它包括电池包内的隔离,电池包外的隔离。电池包内的隔离包括利用纵横梁对模组进行隔离,利用耐火隔热材料填充进行隔离。根据分析可大致分为以下两种:
一、这些结构要能够耐高温,导热率越低越好;同时,在各自区域的电池箱下壳体底部和侧面均设置有云母纸,要求耐温500-800℃高温,阻燃UL94V-0。
二、采用耐火隔热材料,在动力电池包与车辆之间建立隔热屏障,延缓电池箱高温扩散至乘客舱。
而德耐隆Telite®产品由二氧化硅及陶瓷纤维毡复合制备而成,产品内部具有纳米级 空隙可以减慢热传导,提供最低的热传导值,抗热冲击性优异。该纤维毡能够在压缩70%后完全回弹,能够承受自身重量的数千倍的重压而不发生碎裂,过千次压缩循环测试后仍具有很好的回弹性。更重要的是,这种纳米氧化硅纤维毡能够在1500℃丁烷火焰和液氮中保持良好的柔性,长期使用温度为1200℃。高温下稳定性好,不脆裂。可作为高温隔热密封垫,阻隔热短路,熔融金属处密封垫,隔离(防烧结)材料领域。
基于相变材料的抑制电池组高温热失控而填充制备了热响应、超强、超薄(1mm)的柔性德耐隆改性耐火隔热毡复合材料,用于分级抑制电芯之间热失控蔓延。改性耐火隔热毡中的改性材料在正常条件下具有可靠的导热性,在高温下具有较高的热灵敏度。热失控产生后随着电芯的高温会引起德耐隆改性耐火隔热毡的汽化,伴随吸收大量的热量,并释放大量的灭火剂。改性材料释放后剩余的德耐隆改性耐火隔热毡,具有超低的热导率小于(0.02W/m.k),可以继续阻止热量电芯之间传递,在一定程度上抑制系统级的热失控。因此,带有这种改性耐火隔热毡的电池组在正常工作温度下显能够正常热管理,并且在异常条件下具有很高的阻断热失控的能力。此外,它具有可批量化生产、加工性能好、触发温度可调等特点,可用于制造一系列先进、安全、耐用的改性耐火隔热毡。其应用领域甚至可以扩充到有关应急材料、空间探测和消防设备等。
特性
绝缘电阻:100MΩ(1000v绝缘电阻表)
介电强度:≥2000V/min无击穿,无闪络
耐火焰1200℃(5分钟不烧穿)、无粉化无痒
符合环保标准、在火焰中燃烧时不产生有毒有害气体
技术指标
产品密度150kg/m³(GB/T5480-2008)
长期服务温度 -200℃至1200℃ (GB/T17430-1998;ASTM C 447)
压缩强度(变形10%:≥67kPa;变形25%:≥250kPa)
产品憎水率≥98%(GB/T10299-2011)
导热系数不高于0.02W/m.k(GB/T10295-2008;ASTM C 447)
加热线收缩率<2%@650℃(ASTM C 356)
燃烧等级 A级(GB 8624-2012)
总结动力电池安全是电动汽车推广的一个瓶颈,电池管理系统除了强化被动监控能力以外,加强均衡和热管理等主动作用于动力电池的能力,是除了加强电芯、模组等自身设计安全性以外,从本质上提高系统安全性的根本所在。
为了实现动力电池的高安全性或者说在发生意外时提高人员逃生时间,很多厂商通过蜂窝式单独腔体结构或仿熔断器的镍带设计等方式来防止热失控蔓延,这是目前比较常用的解决方案。考虑到成本和电池包体积重量问题和需要主动性抑制电芯与电芯间的热传递,我们需要一种更轻薄更高效的材料介入。在电芯与电芯之间的热传递过程中,热触发的德耐隆改性耐火隔热毡会被释放,材料本身的超低热导率及良好的柔性和1500℃以上的高耐温等级使其有效地抑制隔断温度的传递,从而抑制了电池组件的着火蔓延增加了车内人员逃生的时间。
不难看出,车企和动力电池生产商正在尝试通过不同技术路径,最大程度地保障电池安全。与此同时,未来全新的电池技术也在被寄予厚望。
,免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com