人脸分割线图(分割mask生成动漫人脸)

主要流程包括:

1、确定目标(分割mask ---> 动漫人脸)

2、确定技术路线(语义分割 语义合成)

3、实现(数据集标注 模型调优 界面编写)

PS:原作者并没有开源数据集和代码, 不过给了所有参考资料的源码和数据集链接!复现应该没有问题

人脸分割线图(分割mask生成动漫人脸)(1)

目标

该项目的目标是建立一个深度学习模型,从分割mask生成动漫人脸肖像。

人脸分割线图(分割mask生成动漫人脸)(2)

segmentation mask to anime face portrait

在这个项目中,首先手动标注一小批图像。然后使用数据增强和 U-Net 模型来乘以分割mask的数量来构建数据集。最后,训练一个 GauGAN 模型,用于从分割mask中合成动漫人脸。

1. 语义分割

语义分割是为图像中的每个像素分配标签(也称为类 id)的过程。它的结果是一个分割mask,它是一个大小为高度 * 宽度的数组,每个像素都包含一个类 ID。

人脸分割线图(分割mask生成动漫人脸)(3)

class id: 0 = background, 5 = hair

1.1 Dataset

在进入图像生成任务之前,我们需要一个分割mask数据集,用于训练生成模型将mask转换为图像。

不幸的是,我在互联网上找不到任何动漫人脸分割数据集。尽管如此,Danbooru2019-Portraits 上有一个动漫肖像(512 x 512px)数据集。所以我决定从 Danbooru 肖像中标注的分割mask。

数据集链接:gwern/Crops#danbooru2019-portraits

1.2 Annotation

要标注图像,我们必须确定类。最初的想法是列出 15 个类:

background, body, ear, face, eyeball, pupil, eyelash, nose, mouth, hair, hair_accessory, eyebrow, glasses, clothes, hand

后来为了简单起见,将其缩减为 7 个类,最终的类列表如下:

background, skin, face, eye, mouth, hair, clothes

有许多不同的注释工具,这里使用的是 labelme。

github/wkentaro/labelme

人脸分割线图(分割mask生成动漫人脸)(4)

labelme GUI

人脸分割线图(分割mask生成动漫人脸)(5)

在这项乏味的工作上辛勤工作数周后,设法标注了 200 张图像

人脸分割线图(分割mask生成动漫人脸)(6)

examples of annotated masks

人脸分割线图(分割mask生成动漫人脸)(7)

left: original image, middle: segmentation mask, right: visualization of the annotation

1.3 Data Augmentation

当然,200 张带注释的图像不足以让我们训练我们的网络。我们需要使用数据增强技术来增加数据集的大小。

通过随机旋转、镜像和扭曲图像,我从这 200 个样本中生成了 3000 多个数据。换句话说,现在我有 3200 个数据。

人脸分割线图(分割mask生成动漫人脸)(8)

examples of augmented masks

然而,这些数据在内容和风格方面高度重复,因为它们仅从 200 个样本中扩充而来。为了训练网络将分割掩码转换为高质量和多样化的动漫面孔,我们需要的不仅仅是 200 3000 个数据点。因此,我将首先使用这些数据来训练一个 U-Net 模型来学习从动漫人脸到分割掩码的翻译。然后我会将整个 Danbooru 肖像数据集输入到经过训练的 U-Net 模型中,以生成更多不同人脸的分割掩码。

人脸分割线图(分割mask生成动漫人脸)(9)

anime face portraits to segmentation mask

1.4 U-Net

U-Net 最初是为了分割医学图像进行诊断而引入的。它通过使用跳跃连接来解决传统 FCN(全卷积网络)中发生的信息丢失问题,在精确分割方面做得非常好。

U-Net 的架构与 Autoencoder 相似,但从下采样端到上采样端有额外的连接层。

人脸分割线图(分割mask生成动漫人脸)(10)

source: arxiv/abs/1505.04597

在下采样部分,我使用预训练的 MobileNetV2 从输入图像中提取特征。在上采样部分,我使用了由 Conv2DTranspose、Batchnorm 和 ReLU 层组成的块。

人脸分割线图(分割mask生成动漫人脸)(11)

U-Net v1, v2 architecture

在我的 U-Net 版本 1 中,输入和输出大小为 128 x 128px。经过训练的模型确实学习了从动漫人脸到分割mask的非常好的映射。但由于我想在我后来的合成模型中拥有 512 x 512px 的输入和输出,我将 U-Net 输出的大小调整为 512 x 512px 并进行插值。然而,结果看起来是像素化的,它未能捕捉到出现在小区域(例如嘴巴)中的某些类别。

在版本 2 中,我只是将输入和输出大小更改为 512 x 512px(我一开始并没有这样做,因为我不希望输出嘈杂并在图像中令人困惑的区域中填充随机点,例如 衣服)。正如我所料,v2 的输出很嘈杂。不过,它们看起来比 v1 更好。

人脸分割线图(分割mask生成动漫人脸)(12)

U-Net v3 architecture

在版本 3 中,我尝试通过用 UpSampling2D 层替换 Conv2DTranspose 层来减轻噪音和棋盘伪影。现在的结果比 v2 的要好得多。噪音更少,棋盘伪影更少。

人脸分割线图(分割mask生成动漫人脸)(13)

checkerboard artifacts of v2

人脸分割线图(分割mask生成动漫人脸)(14)

U-Net segmentation results

最后,我将整个 Danbooru 数据集输入 U-Net v3 以构建我的分割掩码数据集。

2.图像语义合成

现在,我们有了分割蒙版数据集,是时候深入研究主要任务——图像语义合成,正如之前所说,这不过是从分割mask到真实图像的转换的一个花哨的名称。

人脸分割线图(分割mask生成动漫人脸)(15)

Semantic Image Synthesis: segmentation mask to anime face portrait

2.1 GauGAN

人脸分割线图(分割mask生成动漫人脸)(16)

source: github/NVlabs/SPADE

GauGAN 由 Nvidia 开发,用于从分割mask合成逼真的图像。在他们的展示网站上,他们展示了 GauGAN 如何出色地通过几笔画来生成逼真的风景图像。

demo链接:nvidia/en-us/research/ai-playground/

人脸分割线图(分割mask生成动漫人脸)(17)

GauGAN architecture

上图展示了 GauGAN 模型的架构。绿色块完全代表发电机。鉴别器是一个 PatchGAN。

2.2 SPADE

人脸分割线图(分割mask生成动漫人脸)(18)

source: nvlabs.github.io/SPADE/

GauGAN 的核心是 SPADE(Spatially-Adaptive Denormalization)模块,它是从 Batch Norm 修改而来的归一化层。它旨在克服 pix2pixHD 中的挑战:在具有统一类 ID 的大区域丢失语义信息。

这是通过将 Conv 层引入Batch Norm来解决的,这样它具有不同的参数集(β,γ),这些参数以分割mask为条件,并且会随着不同的区域而变化。这意味着 SPADE 允许生成器在统一标签区域中学习更多细节。

人脸分割线图(分割mask生成动漫人脸)(19)

因此,在我们的问题中,生成的图像可能如下所示:

人脸分割线图(分割mask生成动漫人脸)(20)

2.3 Pretrained Encoder

encoder 实际上是可选的,因为可以直接从高斯分布中采样 z(潜在向量)而无需任何输入(就像 vanilla GAN)。这里使用了encoder ,因为我想用参考图像对生成的图像进行样式设置。

人脸分割线图(分割mask生成动漫人脸)(21)

VAE architecture

由于与encoder一起训练 GauGAN 是不稳定的,需要更多的时间和资源,所以我提前使用 VAE 训练了我的编码器,然后在 GauGAN 模型的训练过程中使用预训练的encoder对 z 进行采样。

2.4 Results

以下是从不同的分割mask和参考图像生成的图像的结果。

人脸分割线图(分割mask生成动漫人脸)(22)

semantic image synthesis results

2.5 Latent Attribute Vectors

除了使用参考图像来控制输出图像的风格外,我们还可以直接操纵潜在向量 z 来做到这一点。为此,我们首先需要找出潜在空间中的属性向量。

动漫角色面部最重要的属性之一是头发颜色。但是,由于数据集没有带有头发颜色的标签,我必须自己使用 i2v 来标记它们,i2v 是一个用于估计插图标签的库。然后,我们可以通过使用 t-SNE 将样本图像的潜在向量投影到 2D 空间来可视化潜在空间以及估计的标签。

人脸分割线图(分割mask生成动漫人脸)(23)

t-SNE of 4000 samples (estimated hair colors are indicated by image border colors)

最后,通过计算不同标签的潜在向量之间的距离和方向,我们可以得到属性向量。下面的动画演示了使用提取的属性向量在头发颜色之间进行的转换。

,时长00:11

3. GUI

使用 python tkinter 库创建了一个 GUI,用于编辑生成的图像和分割mask。以下是演示视频:

,时长04:21

4. 总结

这个项目还有改进的空间,尤其是语义分割模型(U-Net)和语义图像合成模型(GauGAN)。以下是未来要做的事情的清单:

  • 寻找更好的模型架构以从原始图像中获得更准确的分割掩码
  • 改进 GauGAN 模型以消除头发区域出现的噪声
  • 训练生成模型以生成随机分割mask
,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页