能量守恒的密码 二维空间能量守恒
1.△k=△w=F△ⅹ→△k/△t=F△ⅹ/△t=Fv=W,我来为大家科普一下关于能量守恒的密码 二维空间能量守恒?下面希望有你要的答案,我们一起来看看吧!
能量守恒的密码 二维空间能量守恒
1.△k=△w=F△ⅹ→
△k/△t=F△ⅹ/△t=Fv=W
E=(1/2)mv²=(1/2)m(vₓ² vᵧ²)→
△E/△t=(1/2)m((△vₓ²/△t) (△vᵧ²/△t))=Fₓvₓ Fᵧvᵧ=Fv→
△E=Fₓdⅹ Fᵧdy=Fdr→
E2-E1=∫Fdr
定义A、B两二维空间向量点乘
A·B=AₓBₓ AᵧBᵧ=
|A|cosθᴬ·|B|cosθᴮ
|A|sinθᴬ·|B|sinθᴮ=
|A|·|B|(cosθᴬcosθᴮ sinθᴬsinθᴮ)=
|A||B|cos(θᴬ-θᴮ)=|A||B|cosθ(θ为A、B间夹角)
2.∫Fdr=U₁-U₂在一维空间中,路径固定,肯定成立。在二维空间中,从一点到另一点有无数条路径,不能保证一定成立。
假设成立,即有U(ⅹ,y)→Fₓ=-∂U/∂ⅹ,Fᵧ=-∂U/∂y
∂(∂U/∂ⅹ)/∂y=-∂Fₓ/∂y=
∂(∂U/∂y)/∂ⅹ=-∂Fᵧ/∂ⅹ
即对任给一个二维空间矢量力,若ⅹ方向分力对y求偏导与y方向分力对ⅹ求偏导相等,则∫Fdr=U₁-U₂成立,即做功变化与路径无关,只与始末位置有关。这种力叫保守力。
,免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com