考研数学二高数定理公式(考研的你千万别记混)

高数向来是考研数学最难的一个要点,它不仅考查内容多,并且考查的角度也深对于初期备考的考研人来说,更是有很多易混淆点扰乱考生复习时的视线因此文都教育小编整理了易混淆的概念,在备考初期,这些概念定理务必要理清,今天小编就来聊一聊关于考研数学二高数定理公式?接下来我们就一起去研究一下吧!

考研数学二高数定理公式(考研的你千万别记混)

考研数学二高数定理公式

高数向来是考研数学最难的一个要点,它不仅考查内容多,并且考查的角度也深。对于初期备考的考研人来说,更是有很多易混淆点扰乱考生复习时的视线。因此文都教育小编整理了易混淆的概念,在备考初期,这些概念定理务必要理清。

易混概念

连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系是怎么样的?存在极限,导函数连续,左连续,右连续,左极限,右极限,左导数,右导数,导函数的左极限,导函数的右极限。

罗尔定理

设函数f(x)在闭区间[a,b]上连续(中a不等于b),在开区间(a,b)上可导,且f(a)=f(b),那么至少存在一点ξ∈(a、b),使得f'(ξ)=0。罗尔定理是以法国数学家罗尔的名字命名的。罗尔定理的三个已知条件的意义:①f(x)在[a,b]上连续表明曲线连同端点在内是无缝隙的曲线;②f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在;③f(a)=f(b)表明曲线的割线(线AB)平行于x轴;罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点ξ,使f'(ξ)=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线AB,与x轴平行。

泰勒公式

有的同学,看到泰勒公式就哆嗦,因为乍一看很长很恐怖,瞬间大脑空白,身体失重的感觉。其实在搞明白几点后,原来的症状就没有了。第一:什么情况下要进行泰勒展开;第二:以哪一点为中心进行展开;第三:把谁展开;第四:展开到几阶?

中值定理

应用多次中值定理的专题:大部分的考研题,一般要考查你应用多次中值定理,最重要的就是要培养自己对这种题目的敏感度,要很快反映出这题考哪几个中值定理,敏感性是靠自己多练习综合题培养出来的。经常去复习,那样你对中值定理的题目渐渐就没有那种刚学高数时的害怕心情。

综合应用

对称性,轮换性,奇偶性在积分(重积分,线,面积分)中的综合应用:这几乎每年必考,要么小题中考,要么大题中要用,这是必须掌握的知识,但是它不是靠做3,4道题目就能了解的知识点。做积分题,尤其多重积分和线面积分,埋头苦算也许能算出结果,但是要是能运用以上性质,那可真是轻松搞定,这方面的感觉相信各位考生有过,可是或许仅仅是昙花一现,成功做出后就以为会在以后出现相似的题目吗?其实不然,因为仅仅靠几道题目很大程度上不能给你留下太深刻的印象,下次在考场上再遇到此类题型,你可能会冥思苦想,最终还是选择了最笨的办法,浪费了宝贵时间。以上阐述这些是想说明,考场上的正常或超常发挥是建立在平时多累积,认真做,严要求的基础上。

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页