圆上某一点到切线的最短距离(圆上任意一点到圆外某直线的距离最值公式加快解题速度)

定理31:圆上任意一点到圆外直线l的距离,最大为d r,最小为,d-r,d为圆心到直线的距离,r为半径

通过这一简单的结论,在一些习题中遇到有关的题目,可以为我们提供解题的关键思路;只需要背下这个公式,即可做到秒杀该类型的题目,大大缩短了做题时间。

我们先证明一下这个公式:

证明圆上的任意一点到圆外直线l的距离,最大为d r

画一图,过圆心O作一直线垂直于右边的圆外直线l,交圆于Po和N点,垂足为M2,可知Po到直线l的距离为d r(d为圆心O到直线l距离即OM2长)

再任取圆上一点P(除Po外)做直线l的垂线垂足为M1,P到直线l距离为PM1长

连接PPo和PN,构成圆内直角三角形,可∠PoPN为直角,∠PoPM1为钝角;

过P做PoM2的垂线垂足为M,(由于∠PPoM2为锐角所以点M在线段PM2上)可知PMM2M1为矩形,PM1=MM2<PoM2

即PoM2=d r为圆上任意一点到圆外直线l的距离最大值

圆上某一点到切线的最短距离(圆上任意一点到圆外某直线的距离最值公式加快解题速度)(1)

(2) 证明圆上的任意一点到圆外直线l的距离,最小=d-r

我们同样画一张图,过圆心O作一直线垂直于右边的圆外直线l,交圆与Po和N点,垂足为M2,可知Po到直线l的距离为d-r即PoM2长(d为圆心O到直线l距离即OM2长)

再任取圆上一点P(除Po外)做直线l的垂线垂足为M1,P到直线l距离为PM1长

连接PPo和PN,构成圆内直角三角形,可∠PoPN为直角,∠NPM1为钝角

过Po做PM1的垂线垂足为M,(由于∠PoPM1为锐角所以点M在线段PM1上)可知PoMM1M2为矩形,PM1>MM2=PoM2

即PoM2=d-r为圆上任意一点到圆外直线l的距离最小值

圆上某一点到切线的最短距离(圆上任意一点到圆外某直线的距离最值公式加快解题速度)(2)

接下来,我们用一道例题来展示一下这个公式的简便性与实用性。

(2013春•金安区校级月考)

圆上某一点到切线的最短距离(圆上任意一点到圆外某直线的距离最值公式加快解题速度)(3)

【直接记住结论解题】

首先运用数学三招的第一招翻译,

圆上某一点到切线的最短距离(圆上任意一点到圆外某直线的距离最值公式加快解题速度)(4)

再利用直线的斜截式方程得出切线的方程是y 1=﹣(x 1),

化简得切线的方程是x y 2=0

最后通过我们的盯住目标,目标是求圆上任意一点到直线l距离的最小值,立马联想到我们的定理31:圆上的任意一点到圆外直线l的距离,最小为d-r

但我们要先判断直线是否在圆外,我们需要算一下圆心(3,2)到直线l的距离

圆上某一点到切线的最短距离(圆上任意一点到圆外某直线的距离最值公式加快解题速度)(5)

点击“了解更多”链接,下载本文讲义。

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页