二元一次方程求根公式(二元一次方程求根公式的简述)

设一个二元一次方程为:ax^2+bx+c=0,其中a不为0,因为要满足此方程为二元一次方程所以a不能等于0求根公式为:x1=(-b+(b^2-4ac)^1/2)/2a ,x2=(-b-(b^2-4ac)^1/2)/2a ,今天小编就来聊一聊关于二元一次方程求根公式?接下来我们就一起去研究一下吧!

二元一次方程求根公式(二元一次方程求根公式的简述)

二元一次方程求根公式

设一个二元一次方程为:ax^2+bx+c=0,其中a不为0,因为要满足此方程为二元一次方程所以a不能等于0。求根公式为:x1=(-b+(b^2-4ac)^1/2)/2a ,x2=(-b-(b^2-4ac)^1/2)/2a 。

韦达定理说明了一元二次方程中根和系数之间的关系。

法国数学家弗朗索瓦·韦达于1615年在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。 由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页