八年级上册数学多边形内角和重点(数学八年级上册)
哈喽,大家好!我们又见面了,欢迎继续关注【轩爸辅导】的【口袋数学】。日更【每日一学】【每日一练】,帮助孩子日积月累,考出好的成绩。配套辅导,哪里不会学哪里,哪里出错练哪里,帮助孩子提高效率。
三角形的内角和
三角形内角和定理:三角形的内角和为180°.
要点诠释:应用三角形内角和定理可以解决以下三类问题:
①在三角形中已知任意两个角的度数可以求出第三个角的度数;
②已知三角形三个内角的关系,可以求出其内角的度数;
③求一个三角形中各角之间的关系.
典型例题2.在△ABC中,已知∠A ∠B=80°,∠C=2∠B,试求∠A,∠B和∠C的度数.
【思路点拨】
题中给出两个条件:∠A ∠B=80°,∠C=2∠B,再根据三角形的内角和等于180°,即∠A ∠B ∠C=180°就可以求出∠A,∠B和∠C的度数.
【答案与解析】
解:由∠A ∠B=80°及∠A ∠B ∠C=180°,
知∠C=100°.
又∵ ∠C=2∠B,
∴ ∠B=50°.
∴ ∠A=80°-∠B=80°-50°=30°.
【总结升华】
解答本题的关键是利用隐含条件∠A ∠B ∠C=180°.本题可以设∠B=x,则∠A=80°-x,∠C=2x建立方程求解.
举一反三:【变式】已知,如图 ,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.
【答案】
解:已知△ABC中,∠C=∠ABC=2∠A
设∠A=x
则∠C=∠ABC=2x
x 2x 2x=180°
解得:x=36°
∴∠C=2x=72°
在△BDC中, BD是AC边上的高,
∴∠BDC=90°
∴∠DBC=180°-90°-72°=18°
转载请注明:轩爸辅导 » 【口袋数学】数学八年级上册【每日一学】三角形的内角和的知识要点及例题解析
,免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com