求 超几何分布期望与方差的推导过程
超几何分布是指从有限个物品中,不放回地抽取n个物品,其中有k个具有某种特性的物品的概率分布它的期望和方差的推导过程如下:,今天小编就来聊一聊关于求 超几何分布期望与方差的推导过程?接下来我们就一起去研究一下吧!
求 超几何分布期望与方差的推导过程
超几何分布是指从有限个物品中,不放回地抽取n个物品,其中有k个具有某种特性的物品的概率分布。它的期望和方差的推导过程如下:
期望的推导:
设超几何分布的随机变量为X,样本总量为N,样本中具有某种特性的物品数为M,则超几何分布的概率质量函数为:
P(X=x) = [C(M,x) * C(N-M,n-x)] / C(N,n)
其中,C(n,m)表示从n个不同物品中取出m个物品的组合数。
超几何分布的期望可以表示为:
E(X) = Σxp(x) (x从0到n)
将概率质量函数代入上式,得到:
E(X) = Σx[C(M,x) * C(N-M,n-x)] / C(N,n)
利用组合数的性质,将上式中的C(M,x)和C(N-M,n-x)展开,得到:
E(X) = [nM/N]
其中,[nM/N]表示nM/N的整数部分。
方差的推导:
超几何分布的方差可以表示为:
Var(X) = E(X^2) - [E(X)]^2
其中,E(X^2)表示超几何分布的二阶矩,可以表示为:
E(X^2) = Σx^2p(x) (x从0到n)
将概率质量函数代入上式,得到:
E(X^2) = Σx^2[C(M,x) * C(N-M,n-x)] / C(N,n)
同样利用组合数的性质,将上式中的C(M,x)和C(N-M,n-x)展开,得到:
E(X^2) = [nM(N-M)(n-1)] / [N(N-1)]
将E(X)代入方差公式中,得到:
Var(X) = [nM(N-M)(N-n)] / [N(N-1)]
综上所述,超几何分布的期望为nM/N,方差为[nM(N-M)(N-n)] / [N(N-1)]。
免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com