韦达定理必不可少(韦达不只是韦达定理)

韦达(Viete,Francois,seigneurdeLa Bigotiere)是法国十六世纪最有影响的数学家之一第一个引进系统的代数符号,并对方程论做了改进,今天小编就来聊一聊关于韦达定理必不可少?接下来我们就一起去研究一下吧!

韦达定理必不可少(韦达不只是韦达定理)

韦达定理必不可少

韦达(Viete,Francois,seigneurdeLa Bigotiere)是法国十六世纪最有影响的数学家之一。第一个引进系统的代数符号,并对方程论做了改进。

他生于法国的普瓦图。年青时学习法律当过律师,后从事政治活动,当过议会的议员,在对西班牙的战争中曾为政府破译敌军的密码。韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步。韦达讨论了方程根的各种有理变换,发现了方程根与系数之间的关系(所以人们把叙述一元二次方程根与系数关系的结论称为“韦达定理”)。

韦达在欧洲被尊称为“代数学之父”。韦达最重要的贡献是对代数学的推进,他最早系统地引入代数符号,推进了方程论的发展。韦达用“分析”这个词来概括当时代数的内容和方法。他创设了大量的代数符号,用字母代替未知数,系统阐述并改良了三、四次方程的解法,指出了根与系数之间的关系。给出三次方程不可约情形的三角解法。著有《分析方法入门》、《论方程的识别与订正》等多部著作。

韦达从事数学研究只是出于爱好,然而他却完成了代数和三角学方面的巨著。他的《应用于三角形的数学定律》(1579年)是韦达最早的数学专著之一,可能是西欧第一部论述6种三角形函数解平面和球面三角形方法的系统著作。他被称为现代代数符号之父。韦达还专门写了一篇论文"截角术",初步讨论了正弦,余弦,正切弦的一般公式,首次把代数变换应用到三角学中。他考虑含有倍角的方程,具体给出了将COS(nx)表示成COS(x)的函数并给出当n≤11等于任意正整数的倍角表达式了。

他的《解析方法入门》一书(1591年),集中了他以前在代数方面的大成,使代数学真正成为数学中的一个优秀分支。他对方程论的贡献是在《论方程的整理和修正》一书中提出了二次、三次和四次方程的解法。

《分析方法入门》是韦达最重要的代数著作,也是最早的符号代数专著,书中第1章应用了两种希腊文献:帕波斯的《数学文集》第7篇和丢番图著作中的解题步骤结合起来,认为代数是一种由已知结果求条件的逻辑分析技巧,并自信希腊数学家已经应用了这种分析术,他只不过将这种分析方法重新组织。韦达不满足于丢番图对每一问题都用特殊解法的思想,试图创立一般的符号代数。他引入字母来表示量,用辅音字母B,C,D等表示已知量,用元音字母A(后来用过N)等表示未知量x,而用A quadratus,A cubus 表示 x2、x3 ,并将这种代数称为本“类的运算”以此区别于用来确定数目的“数的运算”。当韦达提出类的运算与数的运算的区别时,就已规定了代数与算术的分界。这样,代数就成为研究一般的类和方程的学问,这种革新被认为是数学史上的重要进步,它为代数学的发展开辟了道路,因此韦达被西方称为"代数学之父"。1593年,韦达又出版了另一部代数学专著—《分析五篇》(5卷,约1591年完成);《论方程的识别与订正》是韦达逝世后由他的朋友A.安德森在巴黎出版的,但早在1591年业已完成。其中得到一系列有关方程变换的公式,给出了G.卡尔达诺三次方程和L.费拉里四次方程解法改进后的求解公式。而另一成就是记载了著名的韦达定理,即方程的根与系数的关系式。韦达还探讨了代数方程数值解的问题,1600年以《幂的数值解法》为题出版。

1593年韦达在《分析五篇》中曾说明怎样用直尺和圆规作出导致某些二次方程的几何问题的解。同年他的《几何补篇》(Supplementum geometriae)在图尔出版了,其中给尺规作图问题所涉及的一些代数方程知识。此外,韦达最早明确给出有关圆周率π值的无穷运算式,而且创造了一套10进分数表示法,促进了记数法的改革。之后,韦达用代数方法解决几何问题的思想由笛卡儿继承,发展成为解析几何学。韦达从某个方面讲,又是几何学方面的权威,他通过393416个边的多边形计算出圆周率,精确到小数点后9位,在相当长的时间里处于世界领先地位。

韦达做出许多重要贡献,成为 了十六世纪法国最杰出的数学家 之一。

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页