直线与圆的位置关系有无不变性(圆与圆的位置关系)
考纲原文
(1)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.
(2)能用直线和圆的方程解决一些简单的问题.
(3)初步了解用代数方法处理几何问题的思想.
知识点详解一、直线与圆的三种位置关系
(1)直线与圆相离,没有公共点;
(2)直线与圆相切,只有一个公共点;
(3)直线与圆相交,有两个公共点.
二、直线与圆的位置关系的判断方法
三、圆与圆的位置关系
四、圆与圆位置关系的判断
圆与圆的位置关系的判断方法有两种:
联立①②,如果该方程组没有实数解,那么两圆相离; 如果该方程组有两组相同的实数解,那么两圆相切; 如果该方程组有两组不同的实数解,那么两圆相交.
五、两圆相交时公共弦所在直线的方程
考向分析
考向一 直线与圆的位置关系
判断直线与圆的位置关系时,通常用几何法,其步骤是:
(1)明确圆心C的坐标(a,b)和半径长r,将直线方程化为一般式;
(2)利用点到直线的距离公式求出圆心到直线的距离d;
(3)比较d与r的大小,写出结论.
考向二 圆与圆的位置关系
判断圆与圆的位置关系时,一般用几何法,其步骤是:
(1)确定两圆的圆心坐标和半径长;
考向三 圆的弦长问题
考向四 圆的切线问题
,
免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com