bom如何编制和管理(论BOM管理的若干重要问题)
导读:在制造业信息化建设过程中,BOM管理的意义已经被广泛认同与重视。BOM管理是企业产品数据管理领域要解决的核心问题,对制造企业的信息流和业务流程具有重要影响,可以说企业BOM数据架构已是企业架构的一部分,对促进企业的内部管理和提高企业竞争力具有重要意义。
作者:张斌 姜剑 王卓 | 来源:e-works
0 前言
在制造业信息化建设过程中,BOM管理的意义已经被广泛认同与重视。BOM管理是企业产品数据管理领域要解决的核心问题,对制造企业的信息流和业务流程具有重要影响,可以说企业BOM数据架构已是企业架构的一部分,对促进企业的内部管理和提高企业竞争力具有重要意义。
作者长期从事企业信息化系统的实施工作,服务于企业一线。回顾成功与失败的经历,发现PLM、ERP、MES等系统的实施成败与BOM管理的成功与否具有密切联系,从系统建设的角度来说,“得BOM者得成功”是众多信息化项目中总结出来的经验。
覆盖企业不同业务领域BOM需求的总体解决方案,其可能包括的BOM形态有DBOM、EBOM、PBOM、MBOM、SBOM、LTP BOM、采购BOM等形式。特定企业的BOM架构方案与行业特点以及企业自身特点密切相关,BOM管理系统实施过程中需要按业务需求、业务成熟度落地需要管理的BOM形态,在实现管理目标和降低BOM架构复杂度之间取得合适的平衡点。
本文尝试探讨制造企业BOM管理的方法与经验,但并不打算将BOM管理的方方面面进行完整论述,重点将结合笔者自身的一些经验,将BOM管理的部分关键业务和问题进行描述和分析,其中主要涉及如企业物料和厂商物料的管理,EBOM版本管理模型,产品模块化配置,EBOM-MBOM转换等几个议题。有些议题可能无法在本文中得到很明确的解决方案,我们的初衷也是抱着抛转引玉的想法,把问题提出来,让广大读者来一起思考,并在以后的管理咨询实践中进行参照和验证。
1 关于物料管理
物料作为BOM的基本单元,一般来说,物料管理包括物料信息(主数据)管理,物料申请流程,物料与技术资料的关联,物料版本与变更等内容。本文将重点分析和BOM相关的两个方面,包括企业物料和厂商物料的对应管理,以及物料的替换管理。
1.1 企业物料与厂商物料
我们把企业自身的物料号称之为企业编码(或是企业物料);如果这个物料属于外购件(反之定义为设计件或自制件),则会另外有厂商编码。厂商物料的管理在很多企业用于管理物料的寻源流程和结果,记录对不同厂商的授权。
许多信息系统均提供同时管理企业编码与厂商编码及其关联关系的功能,如PLM系统通过定义物料的MEP(制造商件)/SEP(供应商件)来解决这类问题。然而,在这种管理模式下,不同厂商的物料仍然可以选择申请一个企业编码或多个企业编码,而选择的不同将对基于企业编码的BOM构建产生重要影响,我们分两种情况进行分析。
1.1.1 企业编码对应单一厂商编码
BOM中主要功能件,往往是被重点管理的物料,如电脑产品中的CPU、内存;汽车中的发动机,风力发电机中的叶片,齿轮箱等。针对这些物料,往往不同厂商提供的零件在企业内部采用不同的物料号进行管理,以方便进行识别和业务控制。
这种一对一模式对BOM的影响包括:
BOM清单是由企业编码物料组成的,BOM设计中就直接指定了这些大部件物料的厂商或品牌。
如果需要进行品牌变更,则需要通过EC流程对BOM执行变更以替换掉BOM中的企业编码物料。
不同厂商供货的物料同时使用可能要编制不同BOM清单。这将造成管理成本增加。
很多企业希望使用不同企业物料号管理多个厂商的同种物料,这样可避免混淆,实现某种形式的“一物一码”。但反过来又希望在不对BOM进行变更的情况下,不同厂商的同种物料能够在企业级BOM环境中实现较灵活的替换管理,这就对企业物料和厂商物料的管理模式上提出了较大挑战。通过“替换件/互换件”功能可以解决部分问题,但是零件替换会带来其他环节复杂性(参见物料替换管理部分)。
1.1.2 企业编码对应多个厂商编码
相反的方案,对一些小零件如螺栓等紧固件、电阻电容等元器件,通常建议通过一个企业物料号代表多个厂商的供货。
这种处理方式对BOM的影响包括:
BOM内装入的是企业物料号,企业物料号通过MEP/SEP管理厂商物料的准入(厂商物料)。
BOM中并不精确指定具体厂商,由下游生产、采购部门根据实际情况进行采购与投料。
其优势之一在于BOM中不需要考虑不同厂商物料的替换问题。
当厂商切换时,不需要对BOM发起EC变更。
存在的主要问题:无法根据企业物料编码区分不同厂商供货,确定唯一实物。采购、仓库、生产等方面需针对不同厂商供货的管理制定对应的解决方案,或确定模糊管理不会存在问题。
图1企业物料和厂商物料的管理模型
如何处理物料的厂商供货件管理问题,要根据企业在管理上的侧重点和习惯采取对应的方案。大部分企业可能都是一种混合管理的模式,如有部分企业通过定义不同物料分类的“厂商相关性”来解决问题,厂商相关性包括强相关,弱相关,不相关等类型,其含义如下:
强相关:一个企业编码对应一个厂商编码。
弱相关:一个企业编码对应多个厂商编码,并指定优选厂商。
不相关:物料不需要管理厂商准入,采购部门根据相关规格直接在市场上采购合适的物料即可。
定义企业物料和厂商物料的相关性,需要由产品开发部门和生产、采购部门达成共识,并充分考虑物料管理模式对BOM管理的影响,并需要针对确定的管理方案进行业务的适应性调整。
1.2 物料替换
物料替换管理是支持BOM中同一位置上多种物料选择的解决方案,用于应对生产过程中的缺料替代,多厂商供货等问题。如上文中提到,如果采用企业编码和厂商编码一对一的管理方案,有可能存在较大量的物料替代需求或同时使用的需求,此种情况可考虑物料替换管理。
一般来说,根据物料替换范围的不同,定义为以下两种形式的物料替换:
互换件:在全系统范围内,一个物料与另外一个或多个物料存在全局替代关系。
替换件:在特定的BOM环境中,一个物料与另外一个或多个物料存在替代管理。
图2替换件/互换件/MEP 管理数据模型
基于EBOM的物料替换管理定义(如上图)并不复杂,但是复杂的情况发生在替换关系随EBOM往下游生产系统传递的环节。因为物料替换具有较复杂的数据逻辑关系,其对于BOM形态转换(EBOM-PBOM-MBOM),接口数据交换,变更管理等业务环节均较大地增加了BOM管理的复杂性和难度。因此,如果需要应用物料替换管理,则下游采购、生产环节和管理系统需要定义对应的业务规范和系统功能以处理物料替换的逻辑。
2 关于EBOM管理
2.1 EBOM管理
本章将重点介绍EBOM管理过程中的一些关键业务和问题。EBOM是由产品开发部门输出的产品结构,由可制造或采购的物料对象组成。EBOM是BOM体系内最核心的一部分。
EBOM管理的关键内容包括(不限于):
EBOM与CAD的关系
先有BOM还是先有CAD结构,CAD结构与EBOM是否结构完全一致等这些都是BOM管理过程中的重要议题。对于这个问题,不同的企业可以有各自的做法,本文不计划对此进行深入探讨。
EBOM与产品配置管理
产品配置管理是BOM管理中比较高级的应用,具体的内容包括构建超级BOM结构,定义特征选项库,执行产品配置,输出精确EBOM等过程。
EBOM版本与变更管理
如何处理BOM中某个层级零部件/装配版本变更对整个EBOM结构的影响。
下文将针对BOM版本和配置相关的部分问题进行展开讨论。
2.1.1 BOM版本与3F原则
在EBOM中,任何层级的零部件均有可能发生变更,某一层级的装配件修订升版后,将导致整个EBOM结构发生变化。大部分情况下,基于减少工作量和避免数据冗余的考量,产品开发部门希望仅对产品EBOM中需要改动的部分进行修订升版,所变更零部件上级装配则可保持版本不变,当新版本零部件发布时可以自动替换上级装配中的旧版本零部件。
基于这一诉求,信息系统(如PLM)一般都实现新版本发布自动替换所有BOM中的旧版零部件的功能(如“最新发布版有效”或“FLOAT原则”)。
同时,为让工程师们理解零部件修订升版所带来的替换后果,产品数据管理(PLM)业界专家提出“3F互换原则”这一理论依据。所谓3F即为“接口尺寸(Fit),使用功能(Fuction),几何形状(Form)”。3F互换原则的引申含义是:如满足3F互换原则,设计工程师就可通过“升级版本”的方式进行BOM和设计变更。因为满足“3F互换原则” 这一前提,变更执行后就会适应系统的“自动替换”原则,从而保证不出现不能替换的意外情况。
对于广大设计工程师来说,在实际工作中并不需要纠结3F互换原则,简单来说可以归纳为两点:
如果变更方式是采用“升级版本”,即为意味着全系统替换。
如果不能全系统替换(在所有产品中替换),则不能“升级版本”,而需要针对变更对象申请新的编码,并针对某产品升版其上级装配件。
2.1.2 层层修订原则
BOM管理实践很好的体现了辩证法理论。某一个管理方案给我们带来方便的同时,也存在某些限制和缺点。
EBOM的“最新发布版有效”这一管理方案存在一个问题,就是在EBOM中的每个层级都有可能发生过多次版本变更,我们无法精确地保存和追溯某一批次产品的EBOM结构。虽然通过时间有效性、单元有效性等有效性控制是可从某种程度上追溯精确BOM,但维护及管理复杂,能够很好应用的企业少之又少。
基于以上问题,部分企业为了实现精确的EBOM管理,当EBOM中某个层级发生变更时,从该层级往上到产品总成需要进行层层升版,以保证每个版本的总成件下均具有精确的BOM结构。
图3EBOM版本管理的两种模式
对大部分企业来说,层层升版是不合理的处理方式,尤其是结构复杂,层级较多,多人协作,变更频繁的产品基本不适用这个模式。但对于一些产品结构简单,变更可控的产品来说,不失为一种精确管理BOM的方式。
2.2 产品配置与模块化
探讨BOM管理,其中有一个重要的议题是产品配置管理,本文将针对产品配置的两种模式,以及模块化管理思想进行讨论。
笔者曾经接触和应用的两种产品配置模式,在本文中定义为“过滤式配置”和“模块化配置”(从概念的定义上行业内专家的说法各有差异,本文仅为了方便描述使用)。
2.2.1 过滤式配置
过滤式配置模式下,在产品结构的各个层次,以及每一个装配和零件上都有可能对BOM结构进行配置规则定义,最终的BOM输出体现为针对现有产品结构中的部分零部件进行隐藏(参见图4)。
过滤器式配置的特点:
不需要预先进行平台配置性规划,可在已经成型的BOM上逐步增加配置。
对BOM设计过程的约束较少。
具体体现为某个系统或子系统装配根据选项的不同展现为不同的产品结构。
不依赖产品模块化设计。
与模块化配置相比,过滤式配置可更加容易的与CAD结构进行对接。
过滤器式配置存在的问题:
BOM需要结合变量/选项才能确定精确结构,产品结构存在不稳定因素。
其重点管控的是超级BOM,难以对某款配置精确BOM做固化和深入管控,因此对于下游基于具体配置的精确BOM需求难以满足。往往通过Excel导入获得产品配置精确BOM。
过滤器式配置应用场景:
比较适用于配置规模较小,配置规则较简单的产品。
比较适用于对单配置精确BOM依赖较少的产品。
图4过滤式配置管理模型
2.2.2 模块化配置
所谓模块是能够完成某种固定功能的系统、子系统、或组件。在进行模块化配置平台规划时,首先需要将产品平台架构划分为系统、子系统、模块等几个层级的功能结构,功能结构顾名思义是以逻辑功能的维度来分解产品结构的;与之相反的概念是物理结构,即从产品各个组成的物理位置来进行划分。
大部分企业的产品架构均合适采用功能结构来支持配置,因为市场选项往往是基于功能点的有无。但如考虑生产制造的因素,期望配置出来的BOM能够较好的适应生产制造,将需要更多考虑产品的物理布局。
大部分产品的功能结构和物料结构有相似性,在进行模块化配置平台划分时,综合考虑功能结构和物料结构是有可能的。
模块化配置的一个特点是强调仅在定义为模块(BLOCK)的层面进行选配,在模块内部不再支持选配功能,即模块本身定义为“不可拆分的单元”。这种模式的意义在于:
第一,向产品开发部门明确BOM构建的原则,即将变量部分定义在模块级别,而不是随意的。
第二,有利于简化产品结构的复杂性,BOM差异主要关注模块清单的多少以及不同,而不需要关注某个模块在具体产品中会有不同结构(过滤式配置特征),因为某个具体的模块内部的BOM是精确无变量的。而BOM的精确性和稳固性对BOM的应用是非常重要的,不需要进行二次化处理的BOM清单是最可能被广大业务部门所接受和使用的。
第三,模块化配置有利于促进模块级别的重用,而非物料级别的重用,从而较大的提高了标准化。
图5模块化配置管理模型
模块化配置的其他特点包括:
设计早期就需要进行模块划分以及产品平台和配置的规划工作。
要求BOM的构建工作面向产品配置平台,可配置模块划分与模块不可拆分的思想需要贯彻设计始终,即需要模块化设计。
产品配置架构与产品BOM为相对独立的控制体系,如在PLM系统将定义为不同的数据类型。
针对某个具体的产品配置,输出精确的模块(BLOCK)清单,以此并组成稳固的配置BOM。
模块化配置的存在的问题:
对产品BOM设计的约束较大,尤其对模块化设计思想的贯彻要求较高。
模块化配置是一种全新的平台化BOM管理思想,与传统的BOM管理方式存在较大差异,包括在信息系统上的数据模型设计。
模块化配置与CAD结构的对应难度相对较大。
模块化配置的应用场景:
适用于模块化设计较好的行业,如汽车行业标准将整车划分为300个左右的模块,基于这些模块进行多选配的开发和管理。
比较适用于配置选项较多的复杂产品。
总结一些关于模块化配置管理的建议如下:
产品模块化的目的是重用和产品配置。明确某个子系统、组件为模块即代表提倡对其进行共用。
模块化设计需要解决模块的外部接口(包括之前提到的3F原则),功能、外形的标准化和一致性,以保证模块能够被重用到多产品环境。
产品变型,产品配置时需要面向模块级别,而不应该将选配延伸到模块内部,即模块是不可拆分单元。
通过信息系统(如PLM)管理模块化设计时,需要对功能、模块、零部件的类型进行清晰定义以区别管理。
实施产品模块化配置时,其第一切入点是EBOM,并向前延伸到CAD模块化设计,先后延伸到模块化配置,模块化工艺和生产制造(难度相对较大)。而不建议采用CAD驱动BOM的方式。
3 关于MBOM管理
在制造业领域,部分企业能够基于一套BOM解决产品设计和生产制造业务;而对于另外部分企业,不同业务领域对BOM的需求和定义具有较大的差异,从而产生了不同的BOM形态。在众多的BOM形态中,其中最典型的就是EBOM和MBOM。
3.1 MBOM的产生方式
从EBOM到MBOM的转换,我们认为有两种操作方式:1)从EBOM直接重构MBOM;2)从EBOM投递到工艺(PBOM),从PBOM生成MBOM。
有很多理论和方法论认为第二种方式是正确的MBOM生成方式,但是很多实践经验表明,EBOM-PBOM-MBOM的数据操作路径长且复杂,首版的MBOM生成问题还不大,但是一旦变更发生,其复杂程度将成倍增加,很多情况下其效率是不能被接受。这其中的关键影响是:
需要执行EBOM变更、PBOM变更、MBOM变更的串行流程;
当一个变更还没有结束时,另外一个变更可能已经开始。
图6从EBOM到PBOM到MBOM的串行流程
变更在这三个环节上的传递,其执行效率远不是三者叠加那么简单,而是更多倍数的效率损失。因此我们认为,EBOM后端的PBOM(工艺)设计和MBOM设计可以是并行的,而不是串行。
我们在多个制造企业的经验表明,大部分工艺设计人员在拿到EBOM后,他们对MBOM的架构是胸有成竹的,而且初步工艺规划和工艺方案可能在很早已经开始了。因此他们可很快速形成初步的工艺流程,并确定在哪些节点应该部署半成品/合件,哪些需要拆分投料。把这些重构需求在系统内用MBOM结构直接搭建出来,有利于快速固化工艺思想,有利于结构之间的快速映射,结构比较和分析等操作。
图7从EBOM到PBOM到MBOM的并行流程
因为产品数据的变更路径往往和首版的编制路径类似,因此当变更发生是,就可以直接从EBOM传递到MBOM,快速实现变更的承接和转换。
在生成MBOM的同时,可以进行工艺路线的规划,工艺路线规划和MBOM的构建两者相互促进,两者完成后通过MBOM的工序分配进行工艺的完整性验证。
3.2 MBOM有效性管理
各个制造企业在MBOM架构设计上各有特点,不尽相同。MBOM管理过程中有很多议题需要讨论,如MBOM的层次化和扁平化,MBOM自动转换,工艺虚拟件管理等。本文中我们重点关注的是MBOM变更和有效性管理的话题,这是MBOM管理过程中最关键的内容之一。
我们针对EBOM和MBOM的变更模型进行了对比分析,将其中的关键点总结如下:
EBOM以零部件的版本来管理变更,新版本的装配发布时,即替换原来的整个装配(也支持有效性管理)。而在MBOM中,零部件版本的概念比较弱化,MBOM更多关注的是某个料号下的增加和删除动作。
EBOM的变更往往是成套的,一次变更中间可能替换或更改多个零部件,并指定每颗物料的生效时间。
而生产上的物料切换,要充分考虑库存因素,某些旧版物料有可能需要继续消耗,因此需要以每颗物料有效性来控制新旧物料切换的时间。
MBOM中的物料生效是离散的,即使是同一次EC内的物料,也可能在不同时间切换。而MBOM必须准确反映生产上的物料切换时间。
ERP系统的生产计划是根据MBOM有效性来进行物料需求计划(MRP)的。
图8EBOM&MBOM变更模型对比
综上所述,MBOM的有效性管理模型和EBOM的BOM版本管理模型是两种不同的模式,如何将EBOM的“版本式管控”机制,转换到MBOM上的“有效性管控”机制,是在信息系统实施过程中要解决的重要问题。目前来看,业内的一些PLM产品如ENOVIA、Teamcenter、Windchill等都有自己的解决方案,或是复杂程度高,或是灵活性差,总体来说还没有可广泛重用的完成解决方案。在BOM管理的实践中,我们需要充分认识到MBOM有效性管理与EBOM管理的差异,并在系统实施过程中根据具体企业情况进行方案的架构与实现。
4 结论
BOM管理对每家制造型企业来说至关重要,然后因为BOM与业务模式的密切相关性而无法设计一套能够广泛应用的完整方案,必须根据企业特点和习惯进行架构设计。在BOM方案架构的过程中会碰到一些共性的、关键的业务和问题,针对这些业务和问题进行分析,理解BOM管理的内在数据模型和原理,参考已有的经验,有利于我们在建设企业BOM管理系统过程中少走弯路,少走歧路。
转自公众号:PLM之神
,
免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com