mstp协议(MSTP原理及应用现状)

MSTP 目 录 2.1MSTP工作原理 ................................................................................................................ 3 2.2MSTP的特点 .................................................................................................................... 3 3.1封装协议: ............................................................................................................... 6 3.2虚级联: ................................................................................................................... 6 3.3链路容量调整机制(LCAS): ................................................................................ 7 4.1MSTP的应用现状 ............................................................................................................ 7 4.2MSTP承载和传送以太网业务的发展趋势 ...................................................... 8 五、小结 ................................................................................................................................. 9 一、MSTP技术的产生背景 多业务传送平台(MSTP)是指基于SDH、同时实现TDM、ATM、IP等业务接入、处理和传送,提供统一网管的多业务传送平台作为传送网解决方案,MSTP伴随着电信网络的发展和技术进步,经历了从支持以太网透传的第一代MSTP到支持二层交换的第二代MSTP再到当前支持以太网业务QoS的新一代(第三代)MSTP的发展历程 1.1第一代MSTP第一代MSTP以支持以太网透传为主要特征以太网透传功能是指将来自以太网接口的信号不经过二层交换,直接映射到SDH的虚容器(VC)中,然后通过SDH设备进行点到点传送第一代MSTP保证以太网业务的透明性,包括以太网MAC帧,VLAN标记等的透明传送以太网透传业务保护直接利用SDH提供的物理层保护第一代MSTP的缺点在于:不提供以太网业务层保护;支持的业务带宽粒度受限于SDH的虚容器,最小为2Mbps;不提供不同以太网业务的QoS区分;不提供流量控制;不提供多个业务流的统计复用和带宽共享;不提供业务层(MAC层)上的多用户隔离第一代MSTP在支持数据业务时的不适应性导致了第二代MSTP解决方案的产生 1.2第二代MSTP第二代MSTP以支持二层交换为主要特点MSTP以太网二层交换功能是指在一个或多个用户以太网接口与一个或多个独立的基于SDH虚容器的点对点链路之间,实现基于以太网链路层的数据帧交换第二代MSTP保证以太网业务的透明性,以太网数据帧的封装采用GFP/LAPS或PPP协议;传输链路带宽可配置,数据帧的映射采用VC通道的相邻级联/虚级联或ML-PPP协议来保证数据帧在传输过程中的完整性;实现转发/过滤以太网数据帧的功能;提供自学习和静态配置两种可选方式维护MAC地址表;支持IEEE802.1d生成树协议STP;支持流量控制,包括半双工模式下背压机制和全双工模式下802.3x Pause帧机制 第二代MSTP相对于第一代MSTP的优势主要在多用户/业务的带宽共享和隔离方面,包括:提供基于802.3x的流量控制;提供业务层上的多用户隔离和VLAN划分;提供基于STP/RSTP等的以太网业务层保护倒换;一些还提供基于802.1p的优先级转发但是,第二代MSTP的缺点也是明显的,包括:不提供QoS支持;基于STP/RSTP的业务层保护倒换时间太慢;所提供的业务带宽粒度受限于VC,一般最小为2Mbps;VLAN的4096地址空间使其在核心节点的扩展能力很受限制,不适合大型城域公网应用;节点处在环上不同位置时,其业务的接入是不公平的;MAC地址的学习/维护以及MAC地址表影响系统性能;基于802.3x的流量控制只是针对点到点链路,不能提供端到端的流量控制;多用户/业务的带宽共享是对本地接口而言,还不能对整个环业务进行共享 第三代MSTP技术的诞生第三代MSTP技术以支持以太网业务QoS为特色它的诞生主要源于克服现有MSTP技术所存在的缺陷从现有MSTP技术对以太网业务的支持上看,不能提供良好QoS支持的一个主要原因是现有的以太网技术是无连接的,尚没有足够QoS处理能力,为了能够将真正QoS引入以太网业务,需要在以太网和SDH/SONET间引入一个中间的智能适配层来处理以太网业务的QoS要求由此,以多协议标记交换(MPLS)为技术特点的新一代MSTP技术——第三代MSTP技术应运而生 二、第三代MSTP技术——MPLS 多协议标记交换(MPLS)是一种可在多种第二层媒质上进行标记交换的网络技术它吸取了ATM高速交换的优点,把面向连接引入控制,是个介于2~3层的2.5层协议它结合了第二层交换和第三层路由的特点,将第二层的基础设施和第三层的路由有机地结合起来第三层的路由在网络的边缘实施,而在MPLS的网络核心采用第二层交换 二、MSTP概念和特点 MSTP(Multi-Service Transfer Platform)(基于SDH 的多业务传送平台)是指基于SDH 平台同时实现TDM、ATM、以太网等业务的接入、处理和传送,提供统一网管的多业务节点 基于SDH的多业务传送节点除应具有标准SDH传送节点所具有的功能外,还具有以下主要功能特征 (1)具有TDM业务、ATM业务或以太网业务的接入功能; (2)具有TDM业务、ATM业务或以太网业务的传送功能包括点到点的透明传送功能; (3)具有ATM业务或以太网业务的带宽统计复用功能; (4)具有ATM业务或以太网业务映射到SDH虚容器的指配功能 基于SDH 的多业务传送节点可根据网络需求应用在传送网的接入层、汇聚层,应用在骨干层的情况有待研究 城域网是当前电信运营商争夺的焦点,目前城域网组网技术种类繁多,大致包括基于SDH结构的城域网、基于以太网结构的城域网、基于ATM结构的城域网和基于DWDM结构的城域网其实,SDH、ATM、 Ethernet 、WDM等各种技术也都在不断吸取其他技术的长处,互相取长补短,即要实现快速传输,又要满足多业务承载,另外还要提供电信级的QoS,各种城域网技术之间表现出一种融合的趋势 2.1MSTP工作原理 MSTP可以将传统的SDH复用器、数字交叉链接器(DXC)、WDM终端、网络二层交换机和IP边缘路由 器等多个独立的设备集成为一个网络设备,即基于SDH技术的多业务传送平台(MSTP),进行统一控制和管理基于SDH的MSTP最适合作为网络边缘的融合节点支持混合型业务,特别是以TDM业务为主的混合业务它不仅适合缺乏网络基础设施的新运营商,应用于局间或POP间,还适合于大企事业用户驻地而且即便对于已敷设了大量SDH网的运营公司,以SDH为基础的多业务平台可以更有效地支持分组数据业务,有助于实现从电路交换网向分组网的过渡所以,它将成为城域网近 期的主流技术之一 这就要求SDH必须从传送网转变为传送网和业务网一体化的多业务平台,即融合的多业务节点MSTP的实现基础是充分利用SDH技术对传输业务数据流提供保护恢复能力和较小的延时性能,并对网络业务支撑层加以改造,以适应多业务应用,实现对二层、三层的数据智能支持即将传送节点与各种业务节点融合在一起,构成业务层和传送层一体化的SDH业务节点,称为融合的网络节点或多业务节点,主要定位于网络边缘 2.2MSTP的特点 (1)业务的带宽灵活配置,MSTP上提供的10/100/1000Mbit/s系列接口,通过VC的捆绑可以满足各种 MSTP 用户的需求; (2)可以根据业务的需要,工作在端口组方式和VLAN方式,其中VLAN方式可以分为接入模式和干线模式: · 端口组方式:单板上全部的系统和用户端口均在一个端口组内这种方式只能应用于点对点对开的业务换句话说,也就是任何一个用户端口和任何一个系统端口(因为只有一个方向,所以没有必要启动所有的系统端口,一个就足够了)被启用了,网线插在任何一个启用的用户端口上,那个用户口就享有了所有带宽,业务就可以开通 · VLAN方式:分为接入模式和干线模式 其中的接入模式,如果不设定VLAN ID,则端口处于端口组的工作方式下,单板上全部的系统和用户端口均在一个端口组内 如果设定了VLAN ID,需要设定“端口VLAN标记”这是因为交换芯片会为收到的数据包增加VLAN ID,然后通过系统端口走光纤发到对端同样VLAN ID的端口上比如某个用户口VLAN ID为2,则对应站点的用户端口的VLAN ID也应该设定为2这种模式可以应用于多个方向的MSTP业务,这时每个方向的端口都要设置不同的VLAN ID然后把该方向的用户端口和系统端口放置到一个虚拟网桥中(该虚拟网桥的VLAN ID必须与“端口VLAN标记”一样) (3)可以工作在全双工、半双工和自适应模式下,具备MAC地址自学习功能; (4)QoS设置: QoS实际上限制端口的发送,原理是发送端口根据业务优先级上有许多发送队列,根据QoS的配置和一定的算法完成各类优先级业务的发送因此,当一个端口可能发送来自多个来源的业务,而且总的流量可能超过发送端口的发送带宽时,可以设置端口的QoS能力,并相应地设置各种业务的优先级配置当QoS不作配置时,带宽平均分配,多个来源的业务尽力传输 QoS的配置就是规定各端口在共享同一带宽时的优先级及所占用带宽的额度 (5)对每个客户独立运行生成树协议 (1)现阶段大量用户的需求还是固定带宽专线,主要是2Mbit/s、10/100Mbit/s、34Mbit/s、155M MSTP bit/s对于这些专线业务,大致可以划分为固定带宽业务和可变带宽业务对于固定带宽业务,MSTP设备从SDH那里集成了优秀的承载、调度能力,对于可变带宽业务,可以直接在MSTP设备上提供端到端透明传输通道,充分保证服务质量,可以充分利用MSTP的二层交换和统计复用功能共享带宽,节约成本,同时使用其中的VLAN划分功能隔离数据,用不同的业务质量等级(CoS)来保障重点用户的服务质量 (2)在城域汇聚层,实现企业网络边缘节点到中心节点的业务汇聚,具有节点多、端口种类多、用户连接分散和较多端口数量等特点采用MSTP组网, 可以实现IP 路由设备10M/100M/1000M POS和2M/FR业务的汇聚或直接接入,支持业务汇聚调度,综合承载,具有良好的生存性根据不同的网络容量需求,可以选择不同速率等级的MSTP设备 三、MSTP承载和传送以太网业务的关键技术 3.1封装协议: MSTP在承载和传送以太网业务时首先要对以太网信号以某种协议进行封装,封装协议可以有很多方式,最常用的有PPP、LAPS、GFP以及一些设备厂商的专有封装机制PPP协议为点到点协议,它要利用HDLC(高速数据链路控制)协议来组帧,分组/包组成的HDLC帧利用字节同步方式映射入SDH的VC中;它在POS(PACKETOVERSDH)系统中用来承载IP数据,在ETHERNETOVER SDH系统中用来承载以太帧LAPS为链路接入协议,是由武汉邮科院余少华博士提出的,它被ITU-T接纳成为标准X.86,这种方式特别用于SDH链路承载以太帧,它与HDLC十分相似GFP为通用帧协议,是在ITU-TG.704标准中定义的一种链路层标准,这种方式可以承载所有的数据业务,是一种可以透明地将各种数据信号封装进现有网络的开放的通用的标准信号适配映射技术,它可以替代众多不同的映射方法,有利于各厂商设备之间的互联互通GFP采用不同的业务数据封装方法对不同的业务数据进行封装,包括帧映射(GFP-F)和透明传输(GFP-T)两种模式,GFP-F封装方式可以将业务信号帧完全地映射进一个可变长度的GFP帧,对封装数据不做任何改动,支持包颗粒级别的速率适配和复用,这种方式是在收到一个完整的数据帧后再处理,需要有缓存和媒体接入控制,因此最适合于以太网业务等可变长度的分组数据GFP-T采用透明映射的方式及时处理而不必等待整个帧的到达,适合处理实时业务以及固定帧长的块状编码信号格式的业务 3.2虚级联: MSTP设备支持以太网业务在网络中的带宽可配置,这是通过VC级联的方式来实现的,也就是利用多个VC容器组成一个更大的容器SDH中VC的级联分为连续级联和虚级联两种连续级联就是用来承载以太网业务的各个VC在SDH的帧结构中是连续的,公用相同的开销如果用来承载以太网业务的各个VC在SDH的帧结构中是独立的,其位置可以灵活处理,那么这种情况称为虚级联通过虚级联技术可以实现对以太网业务带宽和SDH虚容器之间的速率适配,可以将VC-12到VC-4等不同速率的小容器进行组合利用,能够做到很小颗粒的带宽调节,实现了有效的提供合适大小的信道给以太网业务,实现了带宽的动态调整,它比连续级联更好地利用SDH的链路带宽,提高了传送效率,避免了带宽的浪费虚级联的实现最重要的是参与虚级联的VC容器序列号的传送,以保证收端能够将业务信号的VC重新进行排序重组 3.3链路容量调整机制(LCAS): 在ITU-TG.7042标准中定义了LCAS是一种可以在不中断业务的情况下动态调整虚级联个数的功能,它可以灵活地改变虚级联信号的带宽以自动适应业务流量的变化,特别适用于以太网业务带宽动态变化的要求,它和虚级联是衡量MSTP带竟是否有效利用的重要指标LCAS利用SDH预留的开销字节来传递控制信息,控制信息包括固定、增加、正常、VC结束、空闲和不使用六种;通过控制信息的传送来动态的调整VC的个数,适应以太网业务带宽的需求LCAS可以将有效净负荷自动映射到可用的VC上,避免了复杂的人工电路交叉连接配置,提高了带宽指配速度,对业务无损伤,而且在系统出现故障时,可以自动动态调整系统带宽,无须人工介入,在一个或几个VC通路出现故障时,数据传输也能够保持正常因此,LCAS为MSTP提供了端到端的动态带宽调整机制,可以在保证QOS的前提下显著提高网络利用率 四、MSTP现状及发展趋势 4.1MSTP的应用现状 MSTP技术在现有城域传输网络中备受关注,得到了规模应用,并且即将作为业界的一项行业标准而发 MSTP 布它的技术优势与其他技术相比在于:解决了SDH技术对于数据业务承载效率不高的问题;解决了ATM/IP 对于TDM业务承载效率低、成本高的问题;解决了IP QoS不高的问题;解决了RPR技术组网限制问题,实现双重保护,提高业务安全系数;增强数据业务的网络概念,提高网络监测、维护能力;降低业务选型风险;实现降低投资、统一建网、按需建设的组网优势;适应全业务竞争需求,快速提供业务 MSTP使传输网络由配套网络发展为具有独立运营价值的带宽运营网络,利用自身成熟的技术优势提供质高价廉的带宽资源,满足城域带宽需求由于自身多业务的特性,利用B-ADM 设备构建的城域传输网可以根据用户的要求提供种类丰富的带宽服务内容,MSTP技术体制下的B-ADM设备在网络调度、设备等一些方面融入运营理念、智能特性,实现业务的方便、快捷的建立,从而进一步保证带宽运营的可实施性,满足市场对于城域传输网络的需求 4.2MSTP承载和传送以太网业务的发展趋势 从当前以太网业务来看,数据包长度不断下降,小帧比例越来越高,而数据包越短,MSTP处理小帧的封装效率越低,系统处理数据的负荷越重,因此要解决MSTP设备处理小帧的能力同时MSTP在支持传统以太网业务的基础上,还将支持数据网络的新技术标准,如GMPLS信令等 MSTP技术仍在不断的发展之中,今后的发展将进入智能化服务发展阶段,引入自动交换光网络(ASON)功能,利用独立的ASON控制平面来实施自动连接管理,快速响应业务的需求,提供业务的自动配置、网络拓扑的自动发现、带宽动态分配等更为智能化的策略,大大增强MSTP自身的灵活有效支持数据业务的能力 五、小结 综上所述,由于MSTP广泛应用于城域传输网络,激发了城域传输网络的活力,带给运营商更大的利益空间各大设备供应商也在不断地针对MSTP进行研究与开发,MSTP的内涵也在逐步得到丰富相信MSTP的发展依然存在巨大的空间,本身技术的能量也同样具有巨大的潜力等待挖掘MSTP将在城域建设中起到决定性的作用,成为网络建设的首选方案 六、参考文献 1 王会洪; 新一代MSTP的技术分析和应用[J]. 湖北电力 2004年02期 2 曹彦平; 用MSTP技术优化通信网[J]. 铁道通信信号 2005年01期 3多业务传送平台(MSTP)技术与应用/吴英华著/人民邮电出版社,今天小编就来聊一聊关于mstp协议?接下来我们就一起去研究一下吧!

mstp协议(MSTP原理及应用现状)

mstp协议

MSTP 目 录 2.1MSTP工作原理 ................................................................................................................ 3 2.2MSTP的特点 .................................................................................................................... 3 3.1封装协议: ............................................................................................................... 6 3.2虚级联: ................................................................................................................... 6 3.3链路容量调整机制(LCAS): ................................................................................ 7 4.1MSTP的应用现状 ............................................................................................................ 7 4.2MSTP承载和传送以太网业务的发展趋势 ...................................................... 8 五、小结 ................................................................................................................................. 9 一、MSTP技术的产生背景 多业务传送平台(MSTP)是指基于SDH、同时实现TDM、ATM、IP等业务接入、处理和传送,提供统一网管的多业务传送平台。作为传送网解决方案,MSTP伴随着电信网络的发展和技术进步,经历了从支持以太网透传的第一代MSTP到支持二层交换的第二代MSTP再到当前支持以太网业务QoS的新一代(第三代)MSTP的发展历程。 1.1第一代MSTP。第一代MSTP以支持以太网透传为主要特征。以太网透传功能是指将来自以太网接口的信号不经过二层交换,直接映射到SDH的虚容器(VC)中,然后通过SDH设备进行点到点传送。第一代MSTP保证以太网业务的透明性,包括以太网MAC帧,VLAN标记等的透明传送。以太网透传业务保护直接利用SDH提供的物理层保护。第一代MSTP的缺点在于:不提供以太网业务层保护;支持的业务带宽粒度受限于SDH的虚容器,最小为2Mbps;不提供不同以太网业务的QoS区分;不提供流量控制;不提供多个业务流的统计复用和带宽共享;不提供业务层(MAC层)上的多用户隔离。第一代MSTP在支持数据业务时的不适应性导致了第二代MSTP解决方案的产生。 1.2第二代MSTP。第二代MSTP以支持二层交换为主要特点。MSTP以太网二层交换功能是指在一个或多个用户以太网接口与一个或多个独立的基于SDH虚容器的点对点链路之间,实现基于以太网链路层的数据帧交换。第二代MSTP保证以太网业务的透明性,以太网数据帧的封装采用GFP/LAPS或PPP协议;传输链路带宽可配置,数据帧的映射采用VC通道的相邻级联/虚级联或ML-PPP协议来保证数据帧在传输过程中的完整性;实现转发/过滤以太网数据帧的功能;提供自学习和静态配置两种可选方式维护MAC地址表;支持IEEE802.1d生成树协议STP;支持流量控制,包括半双工模式下背压机制和全双工模式下802.3x Pause帧机制。 第二代MSTP相对于第一代MSTP的优势主要在多用户/业务的带宽共享和隔离方面,包括:提供基于802.3x的流量控制;提供业务层上的多用户隔离和VLAN划分;提供基于STP/RSTP等的以太网业务层保护倒换;一些还提供基于802.1p的优先级转发。但是,第二代MSTP的缺点也是明显的,包括:不提供QoS支持;基于STP/RSTP的业务层保护倒换时间太慢;所提供的业务带宽粒度受限于VC,一般最小为2Mbps;VLAN的4096地址空间使其在核心节点的扩展能力很受限制,不适合大型城域公网应用;节点处在环上不同位置时,其业务的接入是不公平的;MAC地址的学习/维护以及MAC地址表影响系统性能;基于802.3x的流量控制只是针对点到点链路,不能提供端到端的流量控制;多用户/业务的带宽共享是对本地接口而言,还不能对整个环业务进行共享。 第三代MSTP技术的诞生。第三代MSTP技术以支持以太网业务QoS为特色。它的诞生主要源于克服现有MSTP技术所存在的缺陷。从现有MSTP技术对以太网业务的支持上看,不能提供良好QoS支持的一个主要原因是现有的以太网技术是无连接的,尚没有足够QoS处理能力,为了能够将真正QoS引入以太网业务,需要在以太网和SDH/SONET间引入一个中间的智能适配层来处理以太网业务的QoS要求。由此,以多协议标记交换(MPLS)为技术特点的新一代MSTP技术——第三代MSTP技术应运而生。 二、第三代MSTP技术——MPLS 多协议标记交换(MPLS)是一种可在多种第二层媒质上进行标记交换的网络技术。它吸取了ATM高速交换的优点,把面向连接引入控制,是个介于2~3层的2.5层协议。它结合了第二层交换和第三层路由的特点,将第二层的基础设施和第三层的路由有机地结合起来。第三层的路由在网络的边缘实施,而在MPLS的网络核心采用第二层交换。 二、MSTP概念和特点 MSTP(Multi-Service Transfer Platform)(基于SDH 的多业务传送平台)是指基于SDH 平台同时实现TDM、ATM、以太网等业务的接入、处理和传送,提供统一网管的多业务节点 基于SDH的多业务传送节点除应具有标准SDH传送节点所具有的功能外,还具有以下主要功能特征。 (1)具有TDM业务、ATM业务或以太网业务的接入功能; (2)具有TDM业务、ATM业务或以太网业务的传送功能包括点到点的透明传送功能; (3)具有ATM业务或以太网业务的带宽统计复用功能; (4)具有ATM业务或以太网业务映射到SDH虚容器的指配功能。 基于SDH 的多业务传送节点可根据网络需求应用在传送网的接入层、汇聚层,应用在骨干层的情况有待研究。 城域网是当前电信运营商争夺的焦点,目前城域网组网技术种类繁多,大致包括基于SDH结构的城域网、基于以太网结构的城域网、基于ATM结构的城域网和基于DWDM结构的城域网。其实,SDH、ATM、 Ethernet 、WDM等各种技术也都在不断吸取其他技术的长处,互相取长补短,即要实现快速传输,又要满足多业务承载,另外还要提供电信级的QoS,各种城域网技术之间表现出一种融合的趋势。 2.1MSTP工作原理 MSTP可以将传统的SDH复用器、数字交叉链接器(DXC)、WDM终端、网络二层交换机和IP边缘路由 器等多个独立的设备集成为一个网络设备,即基于SDH技术的多业务传送平台(MSTP),进行统一控制和管理。基于SDH的MSTP最适合作为网络边缘的融合节点支持混合型业务,特别是以TDM业务为主的混合业务。它不仅适合缺乏网络基础设施的新运营商,应用于局间或POP间,还适合于大企事业用户驻地。而且即便对于已敷设了大量SDH网的运营公司,以SDH为基础的多业务平台可以更有效地支持分组数据业务,有助于实现从电路交换网向分组网的过渡。所以,它将成为城域网近 期的主流技术之一。 这就要求SDH必须从传送网转变为传送网和业务网一体化的多业务平台,即融合的多业务节点。MSTP的实现基础是充分利用SDH技术对传输业务数据流提供保护恢复能力和较小的延时性能,并对网络业务支撑层加以改造,以适应多业务应用,实现对二层、三层的数据智能支持。即将传送节点与各种业务节点融合在一起,构成业务层和传送层一体化的SDH业务节点,称为融合的网络节点或多业务节点,主要定位于网络边缘。 2.2MSTP的特点 (1)业务的带宽灵活配置,MSTP上提供的10/100/1000Mbit/s系列接口,通过VC的捆绑可以满足各种 MSTP 用户的需求; (2)可以根据业务的需要,工作在端口组方式和VLAN方式,其中VLAN方式可以分为接入模式和干线模式: · 端口组方式:单板上全部的系统和用户端口均在一个端口组内。这种方式只能应用于点对点对开的业务。换句话说,也就是任何一个用户端口和任何一个系统端口(因为只有一个方向,所以没有必要启动所有的系统端口,一个就足够了)被启用了,网线插在任何一个启用的用户端口上,那个用户口就享有了所有带宽,业务就可以开通。 · VLAN方式:分为接入模式和干线模式。 其中的接入模式,如果不设定VLAN ID,则端口处于端口组的工作方式下,单板上全部的系统和用户端口均在一个端口组内。 如果设定了VLAN ID,需要设定“端口VLAN标记”。这是因为交换芯片会为收到的数据包增加VLAN ID,然后通过系统端口走光纤发到对端同样VLAN ID的端口上。比如某个用户口VLAN ID为2,则对应站点的用户端口的VLAN ID也应该设定为2。这种模式可以应用于多个方向的MSTP业务,这时每个方向的端口都要设置不同的VLAN ID。然后把该方向的用户端口和系统端口放置到一个虚拟网桥中(该虚拟网桥的VLAN ID必须与“端口VLAN标记”一样)。 (3)可以工作在全双工、半双工和自适应模式下,具备MAC地址自学习功能; (4)QoS设置: QoS实际上限制端口的发送,原理是发送端口根据业务优先级上有许多发送队列,根据QoS的配置和一定的算法完成各类优先级业务的发送。因此,当一个端口可能发送来自多个来源的业务,而且总的流量可能超过发送端口的发送带宽时,可以设置端口的QoS能力,并相应地设置各种业务的优先级配置。当QoS不作配置时,带宽平均分配,多个来源的业务尽力传输。 QoS的配置就是规定各端口在共享同一带宽时的优先级及所占用带宽的额度。 (5)对每个客户独立运行生成树协议。 (1)现阶段大量用户的需求还是固定带宽专线,主要是2Mbit/s、10/100Mbit/s、34Mbit/s、155M MSTP bit/s。对于这些专线业务,大致可以划分为固定带宽业务和可变带宽业务。对于固定带宽业务,MSTP设备从SDH那里集成了优秀的承载、调度能力,对于可变带宽业务,可以直接在MSTP设备上提供端到端透明传输通道,充分保证服务质量,可以充分利用MSTP的二层交换和统计复用功能共享带宽,节约成本,同时使用其中的VLAN划分功能隔离数据,用不同的业务质量等级(CoS)来保障重点用户的服务质量。 (2)在城域汇聚层,实现企业网络边缘节点到中心节点的业务汇聚,具有节点多、端口种类多、用户连接分散和较多端口数量等特点。采用MSTP组网, 可以实现IP 路由设备10M/100M/1000M POS和2M/FR业务的汇聚或直接接入,支持业务汇聚调度,综合承载,具有良好的生存性。根据不同的网络容量需求,可以选择不同速率等级的MSTP设备。 三、MSTP承载和传送以太网业务的关键技术 3.1封装协议: MSTP在承载和传送以太网业务时首先要对以太网信号以某种协议进行封装,封装协议可以有很多方式,最常用的有PPP、LAPS、GFP以及一些设备厂商的专有封装机制。PPP协议为点到点协议,它要利用HDLC(高速数据链路控制)协议来组帧,分组/包组成的HDLC帧利用字节同步方式映射入SDH的VC中;它在POS(PACKETOVERSDH)系统中用来承载IP数据,在ETHERNETOVER SDH系统中用来承载以太帧。LAPS为链路接入协议,是由武汉邮科院余少华博士提出的,它被ITU-T接纳成为标准X.86,这种方式特别用于SDH链路承载以太帧,它与HDLC十分相似。GFP为通用帧协议,是在ITU-TG.704标准中定义的一种链路层标准,这种方式可以承载所有的数据业务,是一种可以透明地将各种数据信号封装进现有网络的开放的通用的标准信号适配映射技术,它可以替代众多不同的映射方法,有利于各厂商设备之间的互联互通。GFP采用不同的业务数据封装方法对不同的业务数据进行封装,包括帧映射(GFP-F)和透明传输(GFP-T)两种模式,GFP-F封装方式可以将业务信号帧完全地映射进一个可变长度的GFP帧,对封装数据不做任何改动,支持包颗粒级别的速率适配和复用,这种方式是在收到一个完整的数据帧后再处理,需要有缓存和媒体接入控制,因此最适合于以太网业务等可变长度的分组数据GFP-T采用透明映射的方式及时处理而不必等待整个帧的到达,适合处理实时业务以及固定帧长的块状编码信号格式的业务。 3.2虚级联: MSTP设备支持以太网业务在网络中的带宽可配置,这是通过VC级联的方式来实现的,也就是利用多个VC容器组成一个更大的容器。SDH中VC的级联分为连续级联和虚级联两种。连续级联就是用来承载以太网业务的各个VC在SDH的帧结构中是连续的,公用相同的开销。如果用来承载以太网业务的各个VC在SDH的帧结构中是独立的,其位置可以灵活处理,那么这种情况称为虚级联。通过虚级联技术可以实现对以太网业务带宽和SDH虚容器之间的速率适配,可以将VC-12到VC-4等不同速率的小容器进行组合利用,能够做到很小颗粒的带宽调节,实现了有效的提供合适大小的信道给以太网业务,实现了带宽的动态调整,它比连续级联更好地利用SDH的链路带宽,提高了传送效率,避免了带宽的浪费。虚级联的实现最重要的是参与虚级联的VC容器序列号的传送,以保证收端能够将业务信号的VC重新进行排序重组。 3.3链路容量调整机制(LCAS): 在ITU-TG.7042标准中定义了LCAS是一种可以在不中断业务的情况下动态调整虚级联个数的功能,它可以灵活地改变虚级联信号的带宽以自动适应业务流量的变化,特别适用于以太网业务带宽动态变化的要求,它和虚级联是衡量MSTP带竟是否有效利用的重要指标。LCAS利用SDH预留的开销字节来传递控制信息,控制信息包括固定、增加、正常、VC结束、空闲和不使用六种;通过控制信息的传送来动态的调整VC的个数,适应以太网业务带宽的需求。LCAS可以将有效净负荷自动映射到可用的VC上,避免了复杂的人工电路交叉连接配置,提高了带宽指配速度,对业务无损伤,而且在系统出现故障时,可以自动动态调整系统带宽,无须人工介入,在一个或几个VC通路出现故障时,数据传输也能够保持正常。因此,LCAS为MSTP提供了端到端的动态带宽调整机制,可以在保证QOS的前提下显著提高网络利用率。 四、MSTP现状及发展趋势 4.1MSTP的应用现状 MSTP技术在现有城域传输网络中备受关注,得到了规模应用,并且即将作为业界的一项行业标准而发 MSTP 布。它的技术优势与其他技术相比在于:解决了SDH技术对于数据业务承载效率不高的问题;解决了ATM/IP 对于TDM业务承载效率低、成本高的问题;解决了IP QoS不高的问题;解决了RPR技术组网限制问题,实现双重保护,提高业务安全系数;增强数据业务的网络概念,提高网络监测、维护能力;降低业务选型风险;实现降低投资、统一建网、按需建设的组网优势;适应全业务竞争需求,快速提供业务。 MSTP使传输网络由配套网络发展为具有独立运营价值的带宽运营网络,利用自身成熟的技术优势提供质高价廉的带宽资源,满足城域带宽需求。由于自身多业务的特性,利用B-ADM 设备构建的城域传输网可以根据用户的要求提供种类丰富的带宽服务内容,MSTP技术体制下的B-ADM设备在网络调度、设备等一些方面融入运营理念、智能特性,实现业务的方便、快捷的建立,从而进一步保证带宽运营的可实施性,满足市场对于城域传输网络的需求。 4.2MSTP承载和传送以太网业务的发展趋势 从当前以太网业务来看,数据包长度不断下降,小帧比例越来越高,而数据包越短,MSTP处理小帧的封装效率越低,系统处理数据的负荷越重,因此要解决MSTP设备处理小帧的能力。同时MSTP在支持传统以太网业务的基础上,还将支持数据网络的新技术标准,如GMPLS信令等。 MSTP技术仍在不断的发展之中,今后的发展将进入智能化服务发展阶段,引入自动交换光网络(ASON)功能,利用独立的ASON控制平面来实施自动连接管理,快速响应业务的需求,提供业务的自动配置、网络拓扑的自动发现、带宽动态分配等更为智能化的策略,大大增强MSTP自身的灵活有效支持数据业务的能力。 五、小结 综上所述,由于MSTP广泛应用于城域传输网络,激发了城域传输网络的活力,带给运营商更大的利益空间。各大设备供应商也在不断地针对MSTP进行研究与开发,MSTP的内涵也在逐步得到丰富。相信MSTP的发展依然存在巨大的空间,本身技术的能量也同样具有巨大的潜力等待挖掘。MSTP将在城域建设中起到决定性的作用,成为网络建设的首选方案。 六、参考文献 1 王会洪; 新一代MSTP的技术分析和应用[J]. 湖北电力 2004年02期 2 曹彦平; 用MSTP技术优化通信网[J]. 铁道通信信号 2005年01期 3多业务传送平台(MSTP)技术与应用/吴英华著/人民邮电出版社

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页