贝叶斯计算公式(科学认知之贝叶斯公式)

贝叶斯全名为托马斯·贝叶斯(Thomas Bayes,1702-1761),18 世纪英国神学家、数学家、数理统计学家和哲学家,概率论理论创始人,贝叶斯统计的创立者,“归纳地”运用数学概率,“从特殊推论一般、从样本推论全体”的第一人。

前言

一群赌徒为了赢钱,琢磨出概率;一个神学家,为了弄清上帝会不会掷骰子,发明了从结果推导原因的统计学公式。这个世界是梦想和利益驱动的,贝叶斯公式将从统计学角度为我们打开一扇大大的门。

通过《女朋友生气是随机事件》我们探讨了一些有趣的概率知识,本篇文章将从贝叶斯公式出发,探究贝叶斯到底是啥,以及其在认知层面的巨大作用。不过据说每出现 1 个公式,文章阅读将下降 1/3。

华为大佬说:人工智能就是统计学。在我眼中,贝叶斯公式就是统计学走向机器学习的起点。

贝叶斯定理(Bayes’s Rule):如果有k个相互独立事件 A1,A2···,Ak 并且,P (A1) P(A2) ... p(Ak)= 1 和一个可以观测到的事件 B,那么有:

贝叶斯计算公式(科学认知之贝叶斯公式)(1)

这个就是贝叶斯公式,相当简洁。

公式中有几个关键概念:P(A)为先验概率,即在观察事件B之前得到的事件A的假设概率P(A|B) 为后验概率,即在观察事件B后得到新数据后计算该假设A的概率P(B|A)为似然度,即在该假设A下得到这一观察数据 B 的概率P(B)为标准化常量,即在任何假设下得到这一观察数据 B 的概率

用一句人话表达则是:

后验概率 = 先验概率×似然度

说到贝叶斯,必然离不开条件概率。

01 / 条件概率

条件概率的公式

贝叶斯计算公式(科学认知之贝叶斯公式)(2)

条件概率翻译过来就是事件B发生条件下A发生的概率,等于 AB 同时发生的概率比上 B 发生的概率。看着和贝叶斯及其相似, 实际上贝叶斯公式也是通过条件概率来证明的,具体就不赘述了。

02 / 贝叶斯公式 VS 条件概率

条件概率是频率统计思维,通过已知的信息去计算事件出现概率,我们称之为正向概率;贝叶斯公式反其道而行之,通过实验结果去反推出现实验结果的原因,我们称之为逆概率

上面这段话听着太拗口。我们用经典的摸球行为进行说明。

1

选择略微复杂点的场景:有两个桶,A 桶中有白球 7 个,黑球 3 个;B 桶中有白球 3 个,黑球 7 个。随机选择一个桶,有放回的抓球。

2

条件概率解决的问题是:摸到白球的概率是多少?

3

贝叶斯公式解决的问题是:我们摸 5 次,出现 3 次白球,2 次黑球,从 A 桶摸球的概率。

条件概率解法:

通过先验知识,我们可以知道随机选择一个桶概率 P(A)=P(B)=0.5通过频率统计知识,我们可以算出条件概率 P(白球|A)=0.7 P(白球|B)=0.3因此在已知知识的情况下,我们预测摸到白球的概率 0.5X0.7 0.3X0.7 = 0.5

贝叶斯公式解法:

那贝叶斯需要计算的是 P(A|x 球),出现x颜色球条件下选择A桶的概率。我们从第一次摸白球开始计算。P(A|白球 1) = P(A) x P(白球|A)/P(白球) = 0.5 x 0.7/0.5 = 0.7这个结果的含义是第一次出现白球,则我们随机选择 A 桶的概率将从 0.5 变为 0.7

同样的计算第二次选择白球的概率 P(A|白球 2) = P(A) x P(白球|A)/P(白球) = 0.7 x 0.7/(0.7x0.7 0.3x0.3) = 0.8448重复计算下来,可以得到 A 桶的概率是 0.7即可以理解为每次不同的观察结果,对于原因会产生影响。白球增加 A 桶的概率,黑球减少 A 桶的概率。

可以看到贝叶斯更加符合我们认知世界的方式。现实世界中,我们往往能观察到大量的现象,我们更加关心现象背后的原因。比如一段文本出现大量的特征,我们会去判断是不是垃圾邮件;比如一个女生同意和你吃饭,是不是对你有好感。

贝叶斯与认知

上面的例子偏向于太学术。按照人话来看贝叶斯公式其实就是 后验概率 = 先验概率×似然度。简单的,我们认知一个新的事物前,先验概率就是我们的感性认知。似然度则是我们需要深度思考,去认真对待的调节因子。

可以看到:

似然度 > 1, 加强先验概率/感性认知

似然度 = 1,后验概率=先验概率

似然度 < 1, 减弱先验概率/感性认知

从上面的例子可以看到,似然度的影响因子主要有两个:一是增加新数据的量,二是增加新数据的质。

依然举个栗子:男孩子追女孩子,总会好奇女孩子是否对自己有兴趣。

自恋的同学会说,我的女神一直看我,肯定对我有好感。

理性的同学将这个场景转化为贝叶斯公式:P(好感|看我)= 先验感觉 * 似然度。从理性角度,先验经验“看我和对我有好感”其实没有太多必然联系,因此概率上可以按 0.5。我们为了求证 P(好感|看我)确实很高,我们就需要更多的观察数据来支持我们的结论。

比如女生是高冷女孩,那么她认真看你,这个新增的数据代表每次看你的质量是很高的,当然似然度会大于 1.如果女生也经常盯着男生看,但是看我的次数更多,这个其实是增加了数据的量,似然度也会大于 1。因此理性的人判断 P(好感|看我) 会比较高。

可以看到自恋的同学是将先验经验设置得太高,以至于忽略了似然度的观察,理性的同学弱化先验经验,加强了似然函数。这其实对应了两类人,强经验弱似然函数和弱经验强似然函数。如下图

贝叶斯计算公式(科学认知之贝叶斯公式)(3)

贝叶斯计算公式(科学认知之贝叶斯公式)(4)

两种人不能说谁优于谁,强经验的人,后验概率的波动较小。弱经验的人,根据贝叶斯公式,更利于输入新的数据,完成后验概率的更新。

总结

2021 年,提升认知成为共识。按照贝叶斯定理,处于认知更新的我们,应该弱化我们的经验,观察世界强化似然度,从而更新自己的观点。像乔帮主所说:stay hungry。

在几百年前,贝叶斯就给出了从逆概率思考的科学框架,实在是佩服。

喜欢加关注❤️,一起进步!

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页