没有x的函数求积分(不定积分dx)

不定积分∫dx/(x^4 1)的计算步骤


主要内容:

本题通过凑分、换元、裂项、反正切函数导数、幂函数导数等方法和知识,介绍不定积分∫dx/(x^4 1)的主要计算步骤。

没有x的函数求积分(不定积分dx)(1)

※.主要步骤

∫dx/(x^4 1)

=∫dx/(x^4 1)

=(1/2)∫[(x^2 1)-(x^2-1)]dx/(x^4 1),此步骤为对分子进行等量变换,

=(1/2)∫(x^2 1)dx/(x^4 1)- (1/2)∫(x^2-1)dx/(x^4 1),此步骤为裂项,

=(1/2)∫(x^2 1)dx/(x^4 1)- (1/2)∫(x^2-1)dx/(x^4 1),两项分子分母同时除以t^2得,

=(1/2)∫[1 (1/x^2)]dx/[x^2 (1/x^2)]- (1/2)∫[1-(1/x^2)]dx/[x^2 (1/x^2)],

=(1/2)∫d(x-1/x)/[x^2 (1/x^2)]- (1/2)∫d(x 1/x)/[x^2 (1/x^2)],

此步骤为分子凑分法,

=(1/2)∫d(x-1/x)/[(x-1/x)^2 2]-(1/2)∫d(x 1/x)/[(x 1/x)^2-2],此步骤为根据分子对分母进行配方计算,

=(1/2)∫d(x-1/x)/2[(x-1/x)^2/2 1]-(1/2)∫d(x 1/x)/{[(x 1/x)-√2][ (x 1/x) √2]},

此步骤前者对分母提取公因式2,后者使用平方差公式,即:

=(1/2)arctan[(x-1/x)/√2]- (1/4√2){∫d(x 1/x)/[(x 1/x)-√2]-∫d(x 1/x)/[(x 1/x) √2]},

=(1/2)arctan[(x-1/x)/√2]- (1/4√2)ln|[(x 1/x)-√2]/ [(x 1/x) √2]| C.

进行等量变形,则:

所求式

=(1/2)arctan[(x^2-1)/√2x]-(1/4√2)ln|[(x^2 1)-√2x]/ [(x^2 1) √2x]| C.

没有x的函数求积分(不定积分dx)(2)

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页