催化裂化催化剂研究进展(调控催化剂表面微平衡研究获进展)

近日,中国科学院精密测量科学与技术创新研究院郑安民研究团队与浙江大学王亮、肖丰收研究团队合作,报道了一种控制催化剂表面微观环境中水物种的吸-脱附平衡的策略,实现合成气制备低碳烯烃过程中催化剂效率翻倍,同时,进一步优化了低碳烯烃的选择性,展现出良好的工业应用前景 ,今天小编就来聊一聊关于催化裂化催化剂研究进展?接下来我们就一起去研究一下吧!

催化裂化催化剂研究进展(调控催化剂表面微平衡研究获进展)

催化裂化催化剂研究进展

近日,中国科学院精密测量科学与技术创新研究院郑安民研究团队与浙江大学王亮、肖丰收研究团队合作,报道了一种控制催化剂表面微观环境中水物种的吸-脱附平衡的策略,实现合成气制备低碳烯烃过程中催化剂效率翻倍,同时,进一步优化了低碳烯烃的选择性,展现出良好的工业应用前景。

费托合成(Fischer-Tropsch process),又称F-T合成,是指以合成气(一氧化碳和氢气的混合气体)为原料合成碳氢化合物的过程,因1923年发明这一方法的两位德国化学家的名字而得名。费托合成开辟了从煤炭中获得重要工业原料的路线,实现了从煤炭中获得燃料和精细化学品,在缓解石油依赖方面发挥了重要作用。由于我国富煤和贫油的能源结构特点,费托合成显得愈发重要。

科学家和工程师们对费托合成的工艺过程已进行多次创新、改进,而实现一氧化碳加氢反应的低成本、高效率进行,仍存在挑战。钴基费托反应过程中产生的水分子吸附在催化剂表面,会遮蔽掉催化剂表面的一部分活性中心,限制催化效能。因此,催化剂表面的水分子快速脱附显得尤为重要。经过反复推敲,科研团队找到了一个新颖的突破口,通过在催化体系中物理混合超疏水材料(聚二乙烯基苯)来调控催化剂表面水分子的动态平衡,实现对催化剂的性能调控。聚二乙烯基苯就像“转运助手”,在钴锰碳化物(催化剂)颗粒之间开辟许多导水通道,为催化剂表面释放出更多的活性位点,较普通催化剂大幅提升了水的扩散速率。经过优化,在250 °C和0.1 MPa的温和反应条件下一氧化碳的转化率提升到无疏水助剂体系的两倍左右,达到63.5%。同时,烃类产物中低碳烯烃的选择性达到71.4%。

在实验结果的基础上,郑安民团队采用高精度的理论模拟,从微观层面进一步探究通道润湿性对水扩散的影响。分子动力学模拟发现,亲水通道与水分子相互作用并减慢它们的扩散,而疏水通道与水分子之间的弱相互作用加速了水的逸出。非平衡动力学模拟结果表明,疏水通道更有利于附着在催化剂表面的水分子快速逸出,从而改变催化剂表面的微观环境,促进水分子的脱附和抑制其再吸附,有效地让催化剂活性中心释放出来,推动反应正向进行,为催化剂持续高效工作提供有利条件。

不同于传统费托催化剂的研究,该工作聚焦于反应产物在催化剂表面的吸-脱附微平衡调控上。通过催化剂和疏水助剂物理混合,研究在催化剂表面构筑特定的微观环境,对现有催化剂“无损”情况下进行反应性能调控,优于通常采用的化学修饰方法。这种新型催化体系不需要改造现有工业反应路线,能够高效率地应用于生产实践。

相关研究成果以《催化剂和疏水性聚合物的物理混合促进水分子逸出来提升CO加氢反应性能》(Physical mixing of a catalyst and a hydrophobic polymer promotes CO hydrogenation through dehydration)为题,发表在《科学》(Science)上。

来源:中国科学院精密测量科学与技术创新研究院

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页